當前位置: 首頁>>編程示例 >>用法及示例精選 >>正文


Python tensorflow.GradientTape.reset()用法及代碼示例

TensorFlow是Google設計的開源Python庫,用於開發機器學習模型和深度學習神經網絡。

reset()用於清除磁帶存儲的所有信息。

用法:reset()

參數:它不接受任何參數。

返回:它不返回任何內容。



範例1:

Python3

# Importing the library 
import tensorflow as tf 
  
x = tf.constant(4.0) 
  
# Using GradientTape 
with tf.GradientTape() as gfg:
  gfg.watch(x) 
  y = x * x * x 
  y+=x*x 
  
# Computing gradient without reset 
res  = gfg.gradient(y, x)  
  
# Printing result 
print("res(y = x*x*x + x*x):",res) 
  
# Using GradientTape 
with tf.GradientTape() as gfg:
  gfg.watch(x) 
  y = x * x * x 
  
  # Resetting the Tape 
  gfg.reset() 
    
  gfg.watch(x) 
  y+=x*x 
  
# Computing gradient with reset 
res  = gfg.gradient(y, x)  
  
# Printing result 
print("res(y = x*x):",res)

輸出:


res(y = x*x*x + x*x): tf.Tensor(56.0, shape=(), dtype=float32)
res(y = x*x): tf.Tensor(8.0, shape=(), dtype=float32)

範例2:

Python3

# Importing the library 
import tensorflow as tf 
  
x = tf.constant(3.0) 
  
# Using GradientTape 
with tf.GradientTape() as gfg:
  gfg.watch(x) 
  y = x * x 
  y+=x*x 
  
# Computing gradient without reset 
res  = gfg.gradient(y, x)  
  
# Printing result 
print("res(y = x*x + x*x):",res) 
  
# Using GradientTape 
with tf.GradientTape() as gfg:
  gfg.watch(x) 
  y = x * x 
  
  # Resetting the Tape 
  gfg.reset() 
  gfg.watch(x) 
  y+=x 
  
# Computing gradient with reset 
res  = gfg.gradient(y, x)  
  
# Printing result 
print("res(y = x):",res)

輸出:


res(y = x*x + x*x): tf.Tensor(12.0, shape=(), dtype=float32)
res(y = x): tf.Tensor(1.0, shape=(), dtype=float32)




相關用法


注:本文由純淨天空篩選整理自aman neekhara大神的英文原創作品 Python – tensorflow.GradientTape.reset()。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。