Statistics
该模块提供了非常强大的工具,可用于计算与统计信息相关的任何信息。 variance()是这样一种函数。此函数有助于根据数据样本(样本是填充数据的子集)计算方差。
variance()
仅当需要计算样本方差时才应使用该函数。还有另一个函数叫做pvariance()
,用于计算整个总体的方差。
在纯统计数据中,variance
是变量与其平均值的平方偏差。本质上,它根据平均值或中位数来衡量一组数据的随机分布。较低的方差值表示数据聚集在一起并且没有广泛散布,而较高的值表示给定集中的数据与平均值相比散布得多。
方差是科学中的重要工具,在科学中,对数据进行统计分析很普遍。它是给定data-set的标准偏差的平方,也被称为分布的第二中心矩。通常用纯统计。
方差通过以下公式计算:
It’s calculated by mean of square minus square of mean
用法: variance( [data], xbar )
Parameters:
[数据]:具有实值数字的可迭代项。
xbar (Optional):将data-set的实际平均值作为值。
Returnype:
返回作为参数传递的值的实际方差。
Exceptions:
StatisticsError为data-set引发的值小于作为参数传递的2个值。
当xbar提供的值与data-set的实际均值不匹配时,将抛出不可能的值。
代码1:
# Python code to demonstrate the working of
# variance() function of Statistics Module
# Importing Statistics module
import statistics
# Creating a sample of data
sample = [2.74, 1.23, 2.63, 2.22, 3, 1.98]
# Prints variance of the sample set
# Function will automatically calculate
# it's mean and set it as xbar
print("Variance of sample set is % s"
%(statistics.variance(sample)))
输出:
Variance of sample set is 0.40924
代码2:演示一系列数据类型上的variance()
# Python code to demonstrate variance()
# function on varying range of data-types
# importing statistics module
from statistics import variance
# importing fractions as parameter values
from fractions import Fraction as fr
# tuple of a set of positive integers
# numbers are spread apart but not very much
sample1 = (1, 2, 5, 4, 8, 9, 12)
# tuple of a set of negative integers
sample2 = (-2, -4, -3, -1, -5, -6)
# tuple of a set of positive and negative numbers
# data-points are spread apart considerably
sample3 = (-9, -1, -0, 2, 1, 3, 4, 19)
# tuple of a set of fractional numbers
sample4 = (fr(1, 2), fr(2, 3), fr(3, 4),
fr(5, 6), fr(7, 8))
# tuple of a set of floating point values
sample5 = (1.23, 1.45, 2.1, 2.2, 1.9)
# Print the variance of each samples
print("Variance of Sample1 is % s " %(variance(sample1)))
print("Variance of Sample2 is % s " %(variance(sample2)))
print("Variance of Sample3 is % s " %(variance(sample3)))
print("Variance of Sample4 is % s " %(variance(sample4)))
print("Variance of Sample5 is % s " %(variance(sample5)))
输出:
Variance of Sample 1 is 15.80952380952381 Variance of Sample 2 is 3.5 Variance of Sample 3 is 61.125 Variance of Sample 4 is 1/45 Variance of Sample 5 is 0.17613000000000006
代码3:演示xbar参数的使用
# Python code to demonstrate
# the use of xbar parameter
# Importing statistics module
import statistics
# creating a sample list
sample = (1, 1.3, 1.2, 1.9, 2.5, 2.2)
# calculating the mean of sample set
m = statistics.mean(sample)
# calculating the variance of sample set
print("Variance of Sample set is % s"
%(statistics.variance(sample, xbar = m)))
输出:
Variance of Sample set is 0.3656666666666667
代码4:当xbar的值与平均值/平均值不同时,显示错误
# Python code to demonstrate the error caused
# when garbage value of xbar is entered
# Importing statistics module
import statistics
# creating a sample list
sample = (1, 1.3, 1.2, 1.9, 2.5, 2.2)
# calculating the mean of sample set
m = statistics.mean(sample)
# Actual value of mean after calculation
# comes out to 1.6833333333333333
# But to demonstrate xbar error let's enter
# -100 as the value for xbar parameter
print(statistics.variance(sample, xbar = -100))
输出:
0.3656666666663053
注意:它的精度与代码3中的输出不同
代码4:展示StatisticsError
# Python code to demonstrate StatisticsError
# importing Statistics module
import statistics
# creating an emoty data-srt
sample = []
# will raise Statistics Error
print(statistics.variance(sample))
输出:
Traceback (most recent call last): File "/home/64bf6d80f158b65d2b75c894d03a7779.py", line 10, in print(statistics.variance(sample)) File "/usr/lib/python3.5/statistics.py", line 555, in variance raise StatisticsError('variance requires at least two data points') statistics.StatisticsError:variance requires at least two data points
应用范围:
方差是统计和处理大量数据中非常重要的工具。就像,当无所不知的均值是未知的(样本均值)时,方差被用作偏差估计量。现实世界中的观察,例如一天中公司所有股份的增减价值,不可能是所有可能的观察。因此,方差是从有限的一组数据中计算出来的,尽管考虑到总体时,方差不会匹配,但仍会为用户提供足以进行其他计算的估计值。
相关用法
- Python statistics mean()用法及代码示例
- Python statistics pvariance()用法及代码示例
- Python statistics harmonic_mean()用法及代码示例
- Python statistics median_low()用法及代码示例
- Python statistics median()用法及代码示例
- Python - statistics stdev()用法及代码示例
- Python statistics median_high()用法及代码示例
- Python statistics median_grouped()用法及代码示例
注:本文由纯净天空筛选整理自retr0大神的英文原创作品 Python statistics | variance()。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。