当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


Python statistics pvariance()用法及代码示例


先决条件:Python统计信息| variance()

pvariance() 函数有助于计算整个方差,而不是样本方差。之间的唯一区别variance()pvariance()是在使用variance()时,仅考虑样本均值,而在pvariance()期间,则考虑整个总体的均值。

总体方差与样本方差相似,它说明了特定总体中的数据点如何分布。它是从data-points到data-set均值的平均距离,为平方。总体方差是总体的一个参数,不依赖于研究方法或抽样方法。


用法: pvariance( [data], mu)

Parameters:
[数据]:具有实值数字的可迭代项。
mu (optional):将data-set /人口的实际平均值作为值。

Returnype:返回作为参数传递的值的实际总体方差。

Exceptions:
StatisticsError为data-set引发的值小于作为参数传递的2个值。
不可能的价值当以mu形式提供的值与data-set的实际平均值不匹配时。

代码1:

# Pythom code to demonstrate the 
# use of pvariance() 
  
# importing statistics module 
import statistics 
  
# creating a random population list 
population = (1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.9, 2.2, 
              2.3, 2.4, 2.6, 2.9, 3.0, 3.4, 3.3, 3.2) 
  
  
# Prints the population variance 
print("Population variance is %s" 
      %(statistics.pvariance(population)))

输出:

Population variance is 0.6658984375


代码2:在不同范围的种群树上演示pvariance()。

# Python code to demonstrate pvariance() 
# on various range of population sets 
  
# importing statistics module 
from statistics import pvariance 
  
# importing fractions module as F 
from fractions import Fraction as F 
  
  
# Population tree for a set of positive integers 
pop1 = (1, 2, 3, 5, 4, 6, 1, 2, 2, 3, 1, 3, 
         7, 8, 9, 1, 1, 1, 2, 6, 7, 8, 9, ) 
  
# Creating a population tree for 
# a set of negative integers 
pop2 = (-36, -35, -34, -32, -30, -31, -33, -33, -33, 
             -38, -36, -35, -34, -38, -40, -31, -32) 
  
# Creating a population tree for 
# a set of fractional numbers 
pop3 = (F(1, 3), F(2, 4), F(2, 3), 
        F(3, 2), F(2, 5), F(2, 2), 
        F(1, 1), F(1, 4), F(1, 2), F(2, 1)) 
  
# Creating a population tree for 
# a set of decimal values 
pop4 = (3.45, 3.2, 2.5, 4.6, 5.66, 6.43, 
        4.32, 4.23, 6.65, 7.87, 9.87, 1.23, 
            1.00, 1.45, 10.12, 12.22, 19.88) 
  
# Print the population variance for 
# the created population trees 
print("Population variance of set 1 is % s"
                        %(pvariance(pop1))) 
                          
print("Population variance of set 2 is % s" 
                        %(pvariance(pop2))) 
                          
print("Population variance of set 3 is % s" 
                        %(pvariance(pop3))) 
                          
print("Population variance of set 4 is % s" 
                        %(pvariance(pop4)))

输出:

Population variance of set 1 is 7.913043478260869
Population variance of set 2 is 7.204152249134948
Population variance of set 3 is 103889/360000
Population variance of set 4 is 21.767923875432526


代码3:演示使用mu参数。

# Python code to demonstrate the use 
#  of 'mu' parameter on pvariance() 
  
# importing statistics module 
import statistics 
  
# Apparently, the Python interpreter doesn't 
# even check whether the value entered for mu 
# is the actual mean of data-set or not. 
# Thus providing incorrect value would 
# lead to impossible answers 
  
# Creating a population tree of the 
# age of kids in a locality 
tree = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
        12, 12, 12, 12, 13, 1, 2, 12, 2, 2, 
              2, 3, 4, 5, 5, 5, 5, 6, 6, 6) 
  
# Finding the mean of population tree 
m = statistics.mean(tree) 
  
# Using the mu parameter 
# while using pvariance() 
print("Population Variance is % s" 
      %(statistics.pvariance(tree, mu = m)))

输出:


Population Variance is 14.30385015608741


代码4:演示pvariance()和variance()之间的区别

# Pythom code to demonstrate the  
# difference between pvariance()  
# and variance() 
  
# importing statistocs module 
import statistics 
  
# Population tree and extract 
# a sample from it 
tree = (1.1, 1.22, .23, .55, .67, 2.33, 2.81, 
             1.54, 1.2, 0.2, 0.1, 1.22, 1.61) 
  
# Sample extract from population tree 
sample = (1.22, .23, .55, .67, 2.33, 
               2.81, 1.54, 1.2, 0.2) 
  
  
# Print sample variance and as  
# well as population variance 
print ("Variance of whole popuation is %s" 
            %(statistics.pvariance(tree))) 
              
print ("Variance of sample from population is %s "
                 % (statistics.variance(sample))) 
  
# Print the difference in both population  
# variance and sample variance 
print("\n") 
  
print("Difference in Population variance"
            "and Sample variance is % s" 
        %(abs(statistics.pvariance(tree)  
        - statistics.variance(sample))))

输出:

Variance of the whole popuation is 0.6127751479289941
Variance of the sample from population is 0.8286277777777779 

Difference in Population variance and Sample variance is 0.21585262984878373

注意:从上面的示例示例中可以看出,总体方差和示例方差相差不大。

代码5:展示StatisticsError

# Python code to demonstrate StatisticsError 
  
# importing statistics module 
import statistics 
  
# creating an empty population set 
pop = () 
  
# will raise StatisticsError 
print(statistics.pvariance(pop))

输出:

Traceback (most recent call last):
  File "/home/fa112e1405f09970eeddd48214318a3c.py", line 10, in 
    print(statistics.pvariance(pop))
  File "/usr/lib/python3.5/statistics.py", line 603, in pvariance
    raise StatisticsError('pvariance requires at least one data point')
statistics.StatisticsError:pvariance requires at least one data point


应用范围:
总体方差的应用与样本方差非常相似,尽管总体方差的范围比样本方差大得多。仅在要计算整个总体的方差时才使用总体方差,否则在计算样本方差时,最好使用variance()。人口差异是统计和处理大量数据中非常重要的工具。就像,当无所不知的均值是未知的(样本均值)时,方差被用作偏差估计量。



相关用法


注:本文由纯净天空筛选整理自retr0大神的英文原创作品 Python statistics | pvariance()。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。