当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


Python scipy stats.frechet_l用法及代码示例


用法:

scipy.stats.frechet_l(*args, **kwds) = <scipy.stats._continuous_distns.frechet_l_gen object>

Frechet左(或Weibull最大值)连续随机变量。

作为一个实例rv_continuous类,frechet_l对象从中继承了通用方法的集合(完整列表请参见下文),并使用特定于此特定发行版的详细信息来完善它们。

注意:

上面的概率密度以“standardized”形式定义。要移动和/或缩放分布,请使用locscale参数。特别,frechet_l.pdf(x, c, loc, scale)等同于frechet_l.pdf(y, c) / scaley = (x - loc) / scale

例子:

>>> from scipy.stats import frechet_l
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

首先计算一下:

>>> c = 3.63
>>> mean, var, skew, kurt = frechet_l.stats(c, moments='mvsk')

显示概率密度函数(pdf):

>>> x = np.linspace(frechet_l.ppf(0.01, c),
...                 frechet_l.ppf(0.99, c), 100)
>>> ax.plot(x, frechet_l.pdf(x, c),
...        'r-', lw=5, alpha=0.6, label='frechet_l pdf')

或者,可以调用分发对象(作为函数)以固定形状,位置和比例参数。这将返回固定固定给定参数的“frozen” RV对象。

冻结发行版并显示冻结的pdf

>>> rv = frechet_l(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

检查的准确性cdfppf

>>> vals = frechet_l.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], frechet_l.cdf(vals, c))
True

生成随机数:

>>> r = frechet_l.rvs(c, size=1000)

并比较直方图:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
../_images/scipy-stats-frechet_l-1.png

方法:

rvs(c, loc=0, scale=1, size=1, random_state=None)

随机变量。

pdf(x, c, loc=0, scale=1)

概率密度函数。

logpdf(x, c, loc=0, scale=1)

概率密度函数的对数。

cdf(x, c, loc=0, scale=1)

累积分布函数。

logcdf(x, c, loc=0, scale=1)

累积分布函数的日志。

sf(x, c, loc=0, scale=1)

生存函数(也定义为1 - cdf,但sf有时更准确)。

logsf(x, c, loc=0, scale=1)

生存函数的日志。

ppf(q, c, loc=0, scale=1)

百分比点函数(的倒数cdf—百分位数)。

isf(q, c, loc=0, scale=1)

逆生存函数(sf)。

moment(n, c, loc=0, scale=1)

n阶非中心矩

stats(c, loc=0, scale=1, moments=’mv’)

均值(‘m’),方差(‘v’),偏斜(‘s’)和/或峰度(‘k’)。

entropy(c, loc=0, scale=1)

RV的(微分)熵。

fit(data, c, loc=0, scale=1)

通用数据的参数估计。

expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)

函数(具有一个参数)相对于分布的期望值。

median(c, loc=0, scale=1)

分布的中位数。

mean(c, loc=0, scale=1)

分布的平均值。

var(c, loc=0, scale=1)

分布的差异。

std(c, loc=0, scale=1)

分布的标准偏差。

interval(alpha, c, loc=0, scale=1)

包含分布的Alpha百分比的范围的端点

源码:

scipy.stats.frechet_l的API实现见:[源代码]

相关用法


注:本文由纯净天空筛选整理自 scipy.stats.frechet_l。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。