用法:
dask.dataframe.multi.merge_asof(left: DataFrame | Series, right: DataFrame | Series, on: IndexLabel | None = None, left_on: IndexLabel | None = None, right_on: IndexLabel | None = None, left_index: bool = False, right_index: bool = False, by=None, left_by=None, right_by=None, suffixes: Suffixes =('_x', '_y'), tolerance=None, allow_exact_matches: bool = True, direction: str = 'backward') → DataFrame
按关键距离执行合并。
这类似于left-join,除了我们匹配最近的键而不是相等的键。两个 DataFrame 都必须按 key 排序。
对于左侧 DataFrame 中的每一行:
“backward” 搜索选择右侧 DataFrame 中 ‘on’ 键小于或等于左侧键的最后一行。
“forward” 搜索选择右侧 DataFrame 中 ‘on’ 键大于或等于左侧键的第一行。
“nearest” 搜索选择右侧 DataFrame 中其 ‘on’ 键在绝对距离上与左侧键最近的行。
默认为“backward”,兼容0.20.0以下的版本。在 0.20.0 版本中添加了方向参数,并引入了“forward” and “nearest”。
在使用 ‘on’ 搜索之前,可选择使用 ‘by’ 匹配等效键。
- left:DataFrame 或命名系列
- right:DataFrame 或命名系列
- on:标签
要加入的字段名称。必须在两个 DataFrame 中都可以找到。数据必须是有序的。此外,这必须是数字列,例如 datetimelike、integer 或 float。必须给出 On 或 left_on/right_on。
- left_on:标签
在左侧 DataFrame 中加入的字段名称。
- right_on:标签
要在右侧 DataFrame 中加入的字段名称。
- left_index:bool
使用左侧 DataFrame 的索引作为连接键。
- right_index:bool
使用正确 DataFrame 的索引作为连接键。
- by:列名或列名列表
在执行合并操作之前匹配这些列。
- left_by:列名
左侧 DataFrame 中要匹配的字段名称。
- right_by:列名
要在右侧 DataFrame 中匹配的字段名称。
- suffixes:2 长度序列(元组,列表,...)
分别应用于左侧和右侧重叠列名的后缀。
- tolerance:int 或 Timedelta,可选,默认无
在此范围内选择asof公差;必须与合并索引兼容。
- allow_exact_matches:布尔值,默认为真
- 如果为 True,则允许匹配相同的 ‘on’ 值(即 less-than-or-equal-to /greater-than-or-equal-to)
- 如果为 False,则不匹配相同的 ‘on’ 值(即严格 less-than /严格 greater-than)。
- direction:‘backward’(默认),‘forward’, or ‘nearest’
是否搜索先前、后续或最接近的匹配项。
- merged: DataFrame
参数:
返回:
例子:
>>> left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) >>> left a left_val 0 1 a 1 5 b 2 10 c
>>> right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]}) >>> right a right_val 0 1 1 1 2 2 2 3 3 3 6 6 4 7 7
>>> pd.merge_asof(left, right, on="a") a left_val right_val 0 1 a 1 1 5 b 3 2 10 c 7
>>> pd.merge_asof(left, right, on="a", allow_exact_matches=False) a left_val right_val 0 1 a NaN 1 5 b 3.0 2 10 c 7.0
>>> pd.merge_asof(left, right, on="a", direction="forward") a left_val right_val 0 1 a 1.0 1 5 b 6.0 2 10 c NaN
>>> pd.merge_asof(left, right, on="a", direction="nearest") a left_val right_val 0 1 a 1 1 5 b 6 2 10 c 7
我们也可以使用索引数据帧。
>>> left = pd.DataFrame({"left_val": ["a", "b", "c"]}, index=[1, 5, 10]) >>> left left_val 1 a 5 b 10 c
>>> right = pd.DataFrame({"right_val": [1, 2, 3, 6, 7]}, index=[1, 2, 3, 6, 7]) >>> right right_val 1 1 2 2 3 3 6 6 7 7
>>> pd.merge_asof(left, right, left_index=True, right_index=True) left_val right_val 1 a 1 5 b 3 10 c 7
这是一个 real-world times-series 示例
>>> quotes = pd.DataFrame( ... { ... "time": [ ... pd.Timestamp("2016-05-25 13:30:00.023"), ... pd.Timestamp("2016-05-25 13:30:00.023"), ... pd.Timestamp("2016-05-25 13:30:00.030"), ... pd.Timestamp("2016-05-25 13:30:00.041"), ... pd.Timestamp("2016-05-25 13:30:00.048"), ... pd.Timestamp("2016-05-25 13:30:00.049"), ... pd.Timestamp("2016-05-25 13:30:00.072"), ... pd.Timestamp("2016-05-25 13:30:00.075") ... ], ... "ticker": [ ... "GOOG", ... "MSFT", ... "MSFT", ... "MSFT", ... "GOOG", ... "AAPL", ... "GOOG", ... "MSFT" ... ], ... "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01], ... "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03] ... } ... ) >>> quotes time ticker bid ask 0 2016-05-25 13:30:00.023 GOOG 720.50 720.93 1 2016-05-25 13:30:00.023 MSFT 51.95 51.96 2 2016-05-25 13:30:00.030 MSFT 51.97 51.98 3 2016-05-25 13:30:00.041 MSFT 51.99 52.00 4 2016-05-25 13:30:00.048 GOOG 720.50 720.93 5 2016-05-25 13:30:00.049 AAPL 97.99 98.01 6 2016-05-25 13:30:00.072 GOOG 720.50 720.88 7 2016-05-25 13:30:00.075 MSFT 52.01 52.03
>>> trades = pd.DataFrame( ... { ... "time": [ ... pd.Timestamp("2016-05-25 13:30:00.023"), ... pd.Timestamp("2016-05-25 13:30:00.038"), ... pd.Timestamp("2016-05-25 13:30:00.048"), ... pd.Timestamp("2016-05-25 13:30:00.048"), ... pd.Timestamp("2016-05-25 13:30:00.048") ... ], ... "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"], ... "price": [51.95, 51.95, 720.77, 720.92, 98.0], ... "quantity": [75, 155, 100, 100, 100] ... } ... ) >>> trades time ticker price quantity 0 2016-05-25 13:30:00.023 MSFT 51.95 75 1 2016-05-25 13:30:00.038 MSFT 51.95 155 2 2016-05-25 13:30:00.048 GOOG 720.77 100 3 2016-05-25 13:30:00.048 GOOG 720.92 100 4 2016-05-25 13:30:00.048 AAPL 98.00 100
默认情况下,我们采用引号的 asof
>>> pd.merge_asof(trades, quotes, on="time", by="ticker") time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
我们仅在引号时间和交易时间之间的 2 毫秒内完成
>>> pd.merge_asof( ... trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("2ms") ... ) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
我们仅在引号时间和交易时间之间的 10 毫秒内截止,并且我们排除了准时的完全匹配。然而,先前的数据将向前传播
>>> pd.merge_asof( ... trades, ... quotes, ... on="time", ... by="ticker", ... tolerance=pd.Timedelta("10ms"), ... allow_exact_matches=False ... ) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 NaN NaN 3 2016-05-25 13:30:00.048 GOOG 720.92 100 NaN NaN 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
相关用法
- Python dask.dataframe.multi.merge用法及代码示例
- Python dask.dataframe.multi.concat用法及代码示例
- Python dask.dataframe.Series.apply用法及代码示例
- Python dask.dataframe.to_records用法及代码示例
- Python dask.dataframe.DataFrame.applymap用法及代码示例
- Python dask.dataframe.Series.clip用法及代码示例
- Python dask.dataframe.Series.prod用法及代码示例
- Python dask.dataframe.Series.fillna用法及代码示例
- Python dask.dataframe.DataFrame.sub用法及代码示例
- Python dask.dataframe.compute用法及代码示例
- Python dask.dataframe.DataFrame.mod用法及代码示例
- Python dask.dataframe.Series.to_frame用法及代码示例
- Python dask.dataframe.read_table用法及代码示例
- Python dask.dataframe.read_hdf用法及代码示例
- Python dask.dataframe.Series.sum用法及代码示例
- Python dask.dataframe.Series.dropna用法及代码示例
- Python dask.dataframe.DataFrame.cummin用法及代码示例
- Python dask.dataframe.Series.gt用法及代码示例
- Python dask.dataframe.Series.ge用法及代码示例
- Python dask.dataframe.Series.repartition用法及代码示例
注:本文由纯净天空筛选整理自dask.org大神的英文原创作品 dask.dataframe.multi.merge_asof。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。