numpy.apply_along_axis(1d_func,axis,array,* args,** kwargs):帮助我们将必需的函数应用于给定数组的一维切片。
1d_func(ar,* args):适用于一维数组,其中ar是沿轴的arr的一维切片。
参数:
1d_func : the required function to perform over 1D array. It can only be applied in 1D slices of input array and that too along a particular axis. axis : required axis along which we want input array to be sliced array : Input array to work on *args : Additional arguments to 1D_function **kwargs : Additional arguments to 1D_function
* args和** kwargs实际上是什么?
这两个都允许您传递变量号。该函数的参数。
*参数:允许向函数发送非关键字可变长度参数列表。
# Python Program illustrating
# use of *args
args = [3, 8]
a = list(range(*args))
print("use of args : \n ", a)
输出:
use of args : [3, 4, 5, 6, 7]
** kwargs:允许您将关键字的可变长度参数传递给函数。当我们要处理函数中的命名参数时使用它。
# Python Program illustrating
# use of **kwargs
def test_args_kwargs(in1, in2, in3):
print ("in1:", in1)
print ("in2:", in2)
print ("in3:", in3)
kwargs = {"in3": 1, "in2": "No.","in1":"geeks"}
test_args_kwargs(**kwargs)
输出:
in1: geeks in2: No. in3: 1
代码1:解释numpy.apply_along_axis()用法的Python代码。
# Python Program illustarting
# apply_along_axis() in NumPy
import numpy as geek
# 1D_func is "geek_fun"
def geek_fun(a):
# Returning the sum of elements at start index and at last index
# inout array
return (a[0] + a[-1])
arr = geek.array([[1,2,3],
[4,5,6],
[7,8,9]])
'''
-> [1,2,3] <- 1 + 7
[4,5,6] 2 + 8
-> [7,8,9] <- 3 + 9
'''
print("axis=0 : ", geek.apply_along_axis(geek_fun, 0, arr))
print("\n")
''' | |
[1,2,3] 1 + 3
[4,5,6] 4 + 6
[7,8,9] 7 + 9
^ ^
'''
print("axis=1 : ", geek.apply_along_axis(geek_fun, 1, arr))
输出:
axis=0 : [ 8 10 12] axis=1 : [ 4 10 16]
代码2:在NumPy Python中使用apply_along_axis()进行排序
# Python Program illustarting
# apply_along_axis() in NumPy
import numpy as geek
geek_array = geek.array([[8,1,7],
[4,3,9],
[5,2,6]])
# using pre-defined sorted function as 1D_func
print("Sorted as per axis 1 : \n", geek.apply_along_axis(sorted, 1, geek_array))
print("\n")
print("Sorted as per axis 0 : \n", geek.apply_along_axis(sorted, 0, geek_array))
输出:
Sorted as per axis 1 : [[1 7 8] [3 4 9] [2 5 6]] Sorted as per axis 0 : [[4 1 6] [5 2 7] [8 3 9]]
相关用法
注:本文由纯净天空筛选整理自 numpy.apply_along_axis() in Python。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。