本文整理汇总了TypeScript中THREE.Matrix4.multiply方法的典型用法代码示例。如果您正苦于以下问题:TypeScript Matrix4.multiply方法的具体用法?TypeScript Matrix4.multiply怎么用?TypeScript Matrix4.multiply使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类THREE.Matrix4
的用法示例。
在下文中一共展示了Matrix4.multiply方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的TypeScript代码示例。
示例1: rotate
rotate (x: number, y: number) {
const [ dx, dy ] = this._getRotateXY(x, y)
tmpRotateXMatrix.makeRotationX(dy)
tmpRotateYMatrix.makeRotationY(dx)
tmpRotateXMatrix.multiply(tmpRotateYMatrix)
this.controls.applyMatrix(tmpRotateXMatrix)
}
示例2: getMatrix
getMatrix () {
const h = this.volume.header
const matrix = new Matrix4()
matrix.multiply(
new Matrix4().makeTranslation(
h.originX, h.originY, h.originZ
)
)
matrix.multiply(
new Matrix4().makeBasis(
h.basisZ, h.basisY, h.basisX
)
)
return matrix
}
示例3: getMatrix
getMatrix () {
const h = this.volume.header
const basisX = [
h.a,
0,
0
]
const basisY = [
h.b * Math.cos(Math.PI / 180.0 * h.gamma),
h.b * Math.sin(Math.PI / 180.0 * h.gamma),
0
]
const basisZ = [
h.c * Math.cos(Math.PI / 180.0 * h.beta),
h.c * (
Math.cos(Math.PI / 180.0 * h.alpha) -
Math.cos(Math.PI / 180.0 * h.gamma) *
Math.cos(Math.PI / 180.0 * h.beta)
) / Math.sin(Math.PI / 180.0 * h.gamma),
0
]
basisZ[ 2 ] = Math.sqrt(
h.c * h.c * Math.sin(Math.PI / 180.0 * h.beta) *
Math.sin(Math.PI / 180.0 * h.beta) - basisZ[ 1 ] * basisZ[ 1 ]
)
const basis = [ [], basisX, basisY, basisZ ]
const nxyz = [ 0, h.NA, h.NB, h.NC ]
const mapcrs = [ 0, 1, 2, 3 ]
const matrix = new Matrix4()
matrix.set(
basis[ mapcrs[1] ][0] / nxyz[ mapcrs[1] ],
basis[ mapcrs[2] ][0] / nxyz[ mapcrs[2] ],
basis[ mapcrs[3] ][0] / nxyz[ mapcrs[3] ],
0,
basis[ mapcrs[1] ][1] / nxyz[ mapcrs[1] ],
basis[ mapcrs[2] ][1] / nxyz[ mapcrs[2] ],
basis[ mapcrs[3] ][1] / nxyz[ mapcrs[3] ],
0,
basis[ mapcrs[1] ][2] / nxyz[ mapcrs[1] ],
basis[ mapcrs[2] ][2] / nxyz[ mapcrs[2] ],
basis[ mapcrs[3] ][2] / nxyz[ mapcrs[3] ],
0,
0, 0, 0, 1
)
matrix.multiply(new Matrix4().makeTranslation(
h.AMIN, h.BMIN, h.CMIN
))
return matrix
}
示例4: getMatrix
getMatrix () {
const h = this.volume.header
const matrix = new Matrix4()
matrix.multiply(
new Matrix4().makeRotationY(degToRad(90))
)
matrix.multiply(
new Matrix4().makeTranslation(
-h.zmin, h.ymin, h.xmin
)
)
matrix.multiply(
new Matrix4().makeScale(
-h.hz, h.hy, h.hx
)
)
return matrix
}
示例5: rotateComponent
rotateComponent (x: number, y: number) {
if (!this.component) return
const [ dx, dy ] = this._getRotateXY(x, y)
tmpRotateMatrix.extractRotation(this.component.transform)
tmpRotateMatrix.premultiply(this.viewer.rotationGroup.matrix)
tmpRotateMatrix.getInverse(tmpRotateMatrix)
tmpRotateVector.set(1, 0, 0)
tmpRotateVector.applyMatrix4(tmpRotateMatrix)
tmpRotateXMatrix.makeRotationAxis(tmpRotateVector, dy)
tmpRotateVector.set(0, 1, 0)
tmpRotateVector.applyMatrix4(tmpRotateMatrix)
tmpRotateYMatrix.makeRotationAxis(tmpRotateVector, dx)
tmpRotateXMatrix.multiply(tmpRotateYMatrix)
tmpRotateQuaternion.setFromRotationMatrix(tmpRotateXMatrix)
this.component.quaternion.premultiply(tmpRotateQuaternion)
this.component.updateMatrix()
}
示例6: getMatrix
getMatrix () {
const h = this.volume.header
const basisX = [
h.xlen,
0,
0
]
const basisY = [
h.ylen * Math.cos(Math.PI / 180.0 * h.gamma),
h.ylen * Math.sin(Math.PI / 180.0 * h.gamma),
0
]
const basisZ = [
h.zlen * Math.cos(Math.PI / 180.0 * h.beta),
h.zlen * (
Math.cos(Math.PI / 180.0 * h.alpha) -
Math.cos(Math.PI / 180.0 * h.gamma) *
Math.cos(Math.PI / 180.0 * h.beta)
) / Math.sin(Math.PI / 180.0 * h.gamma),
0
]
basisZ[ 2 ] = Math.sqrt(
h.zlen * h.zlen * Math.sin(Math.PI / 180.0 * h.beta) *
Math.sin(Math.PI / 180.0 * h.beta) - basisZ[ 1 ] * basisZ[ 1 ]
)
const basis = [ [], basisX, basisY, basisZ ]
const nxyz = [ 0, h.MX, h.MY, h.MZ ]
const mapcrs = [ 0, h.MAPC, h.MAPR, h.MAPS ]
const matrix = new Matrix4()
matrix.set(
basis[ mapcrs[1] ][0] / nxyz[ mapcrs[1] ],
basis[ mapcrs[2] ][0] / nxyz[ mapcrs[2] ],
basis[ mapcrs[3] ][0] / nxyz[ mapcrs[3] ],
0,
basis[ mapcrs[1] ][1] / nxyz[ mapcrs[1] ],
basis[ mapcrs[2] ][1] / nxyz[ mapcrs[2] ],
basis[ mapcrs[3] ][1] / nxyz[ mapcrs[3] ],
0,
basis[ mapcrs[1] ][2] / nxyz[ mapcrs[1] ],
basis[ mapcrs[2] ][2] / nxyz[ mapcrs[2] ],
basis[ mapcrs[3] ][2] / nxyz[ mapcrs[3] ],
0,
0, 0, 0, 1
)
matrix.setPosition(new Vector3(
h.originX, h.originY, h.originZ
))
matrix.multiply(new Matrix4().makeTranslation(
h.NXSTART, h.NYSTART, h.NZSTART
))
return matrix
}
示例7: getMatrix
getMatrix () {
const h: Dsn6Header = this.volume.header
const basisX = [
h.xlen as number,
0,
0
]
const basisY = [
h.ylen * Math.cos(Math.PI / 180.0 * h.gamma),
h.ylen * Math.sin(Math.PI / 180.0 * h.gamma),
0
]
const basisZ = [
h.zlen * Math.cos(Math.PI / 180.0 * h.beta),
h.zlen * (
Math.cos(Math.PI / 180.0 * h.alpha) -
Math.cos(Math.PI / 180.0 * h.gamma) *
Math.cos(Math.PI / 180.0 * h.beta)
) / Math.sin(Math.PI / 180.0 * h.gamma),
0
]
basisZ[ 2 ] = Math.sqrt(
h.zlen * h.zlen * Math.sin(Math.PI / 180.0 * h.beta) *
Math.sin(Math.PI / 180.0 * h.beta) - basisZ[ 1 ] * basisZ[ 1 ]
)
const basis = [ [], basisX, basisY, basisZ ]
const nxyz = [ 0, h.xRate, h.yRate, h.zRate ]
const mapcrs = [ 0, 1, 2, 3 ]
const matrix = new Matrix4()
matrix.set(
basis[ mapcrs[1] ][0] / nxyz[ mapcrs[1] ],
basis[ mapcrs[2] ][0] / nxyz[ mapcrs[2] ],
basis[ mapcrs[3] ][0] / nxyz[ mapcrs[3] ],
0,
basis[ mapcrs[1] ][1] / nxyz[ mapcrs[1] ],
basis[ mapcrs[2] ][1] / nxyz[ mapcrs[2] ],
basis[ mapcrs[3] ][1] / nxyz[ mapcrs[3] ],
0,
basis[ mapcrs[1] ][2] / nxyz[ mapcrs[1] ],
basis[ mapcrs[2] ][2] / nxyz[ mapcrs[2] ],
basis[ mapcrs[3] ][2] / nxyz[ mapcrs[3] ],
0,
0, 0, 0, 1
)
matrix.multiply(
new Matrix4().makeRotationY(degToRad(90))
)
matrix.multiply(new Matrix4().makeTranslation(
-h.zStart, h.yStart, h.xStart
))
matrix.multiply(new Matrix4().makeScale(
-1, 1, 1
))
return matrix
}