当前位置: 首页>>代码示例>>Python>>正文


Python feature_selection.mutual_info_regression方法代码示例

本文整理汇总了Python中sklearn.feature_selection.mutual_info_regression方法的典型用法代码示例。如果您正苦于以下问题:Python feature_selection.mutual_info_regression方法的具体用法?Python feature_selection.mutual_info_regression怎么用?Python feature_selection.mutual_info_regression使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.feature_selection的用法示例。


在下文中一共展示了feature_selection.mutual_info_regression方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: predict

# 需要导入模块: from sklearn import feature_selection [as 别名]
# 或者: from sklearn.feature_selection import mutual_info_regression [as 别名]
def predict(self, a, b):
        """ Compute the test statistic

        Args:
            a (array-like): Variable 1
            b (array-like): Variable 2

        Returns:
            float: test statistic
        """
        a = np.array(a).reshape((-1, 1))
        b = np.array(b).reshape((-1, 1))
        return (mutual_info_regression(a, b.reshape((-1,))) + mutual_info_regression(b, a.reshape((-1,))))/2 
开发者ID:FenTechSolutions,项目名称:CausalDiscoveryToolbox,代码行数:15,代码来源:numerical.py

示例2: feature_importance_regression

# 需要导入模块: from sklearn import feature_selection [as 别名]
# 或者: from sklearn.feature_selection import mutual_info_regression [as 别名]
def feature_importance_regression(features, target, n_neighbors=3, random_state=None):

    cont = features.select_dtypes(include=[np.floating])
    disc = features.select_dtypes(include=[np.integer, np.bool])

    cont_imp = pd.DataFrame(index=cont.columns)
    disc_imp = pd.DataFrame(index=disc.columns)

    # Continuous features
    if cont_imp.index.size > 0:

        # Pearson correlation
        pearson = np.array([stats.pearsonr(feature, target) for _, feature in cont.iteritems()])
        cont_imp['pearson_r'] = pearson[:, 0]
        cont_imp['pearson_r_p_value'] = pearson[:, 1]

        # Mutual information
        mut_inf = feature_selection.mutual_info_regression(cont, target, discrete_features=False,
                                                           n_neighbors=n_neighbors,
                                                           random_state=random_state)
        cont_imp['mutual_information'] = mut_inf

    # Discrete features
    if disc_imp.index.size > 0:

        # F-test
        f_tests = defaultdict(dict)

        for feature in disc.columns:
            groups = [target[idxs] for idxs in disc.groupby(feature).groups.values()]
            statistic, p_value = stats.f_oneway(*groups)
            f_tests[feature]['f_statistic'] = statistic
            f_tests[feature]['f_p_value'] = p_value

        f_tests_df = pd.DataFrame.from_dict(f_tests, orient='index')
        disc_imp['f_statistic'] = f_tests_df['f_statistic']
        disc_imp['f_p_value'] = f_tests_df['f_p_value']

        # Mutual information
        mut_inf = feature_selection.mutual_info_regression(disc, target, discrete_features=True,
                                                           n_neighbors=n_neighbors,
                                                           random_state=random_state)
        disc_imp['mutual_information'] = mut_inf

    return cont_imp, disc_imp 
开发者ID:MaxHalford,项目名称:xam,代码行数:47,代码来源:eda.py


注:本文中的sklearn.feature_selection.mutual_info_regression方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。