当前位置: 首页>>代码示例>>Python>>正文


Python feature_selection.SelectFdr方法代码示例

本文整理汇总了Python中sklearn.feature_selection.SelectFdr方法的典型用法代码示例。如果您正苦于以下问题:Python feature_selection.SelectFdr方法的具体用法?Python feature_selection.SelectFdr怎么用?Python feature_selection.SelectFdr使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.feature_selection的用法示例。


在下文中一共展示了feature_selection.SelectFdr方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_objectmapper

# 需要导入模块: from sklearn import feature_selection [as 别名]
# 或者: from sklearn.feature_selection import SelectFdr [as 别名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.feature_selection.GenericUnivariateSelect,
                      fs.GenericUnivariateSelect)
        self.assertIs(df.feature_selection.SelectPercentile,
                      fs.SelectPercentile)
        self.assertIs(df.feature_selection.SelectKBest, fs.SelectKBest)
        self.assertIs(df.feature_selection.SelectFpr, fs.SelectFpr)
        self.assertIs(df.feature_selection.SelectFromModel,
                      fs.SelectFromModel)
        self.assertIs(df.feature_selection.SelectFdr, fs.SelectFdr)
        self.assertIs(df.feature_selection.SelectFwe, fs.SelectFwe)
        self.assertIs(df.feature_selection.RFE, fs.RFE)
        self.assertIs(df.feature_selection.RFECV, fs.RFECV)
        self.assertIs(df.feature_selection.VarianceThreshold,
                      fs.VarianceThreshold) 
开发者ID:pandas-ml,项目名称:pandas-ml,代码行数:18,代码来源:test_feature_selection.py

示例2: featureFitting

# 需要导入模块: from sklearn import feature_selection [as 别名]
# 或者: from sklearn.feature_selection import SelectFdr [as 别名]
def featureFitting(filename, X, y, featureNames,optimalFlag, kbest=20, alpha=0.05, model=None):
    '''
    Gets the K-best features (filtered by FDR, then select best ranked by t-test, more advanced options can be implemented).
    Save the data/matrix with the resulting/kept features to a new output file, "REDUCED_Feat.csv"
    Returns new features matrix, FD scaler, and K-select scaler
    '''
    a=alpha
    FD = SelectFdr(alpha=a)
    X = FD.fit_transform(X,y)

    selectK = SelectKBest(k=kbest)
    selectK.fit(X,y)
    selectK_mask=selectK.get_support()
    K_featnames = featureNames[selectK_mask]
    print("K_featnames: %s" %(K_featnames))
    Reduced_df = pd.read_csv(filename, index_col=0)
    Reduced_df = Reduced_df[Reduced_df.columns[selectK_mask]]
    Reduced_df.to_csv('REDUCED_Feat.csv')
    return Reduced_df, FD, selectK 
开发者ID:ddofer,项目名称:ProFET,代码行数:21,代码来源:Model_trainer.py


注:本文中的sklearn.feature_selection.SelectFdr方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。