本文整理汇总了Python中rllab.misc.ext.lazydict方法的典型用法代码示例。如果您正苦于以下问题:Python ext.lazydict方法的具体用法?Python ext.lazydict怎么用?Python ext.lazydict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类rllab.misc.ext
的用法示例。
在下文中一共展示了ext.lazydict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import lazydict [as 别名]
def update_opt(self, loss, target, inputs, network_outputs, extra_inputs=None):
"""
:param loss: Symbolic expression for the loss function.
:param target: A parameterized object to optimize over. It should implement methods of the
:class:`rllab.core.paramerized.Parameterized` class.
:param inputs: A list of symbolic variables as inputs
:return: No return value.
"""
self._target = target
if extra_inputs is None:
extra_inputs = list()
self._hf_optimizer = hf_optimizer(
_p=target.get_params(trainable=True),
inputs=(inputs + extra_inputs),
s=network_outputs,
costs=[loss],
)
self._opt_fun = lazydict(
f_loss=lambda: compile_function(inputs + extra_inputs, loss),
)
示例2: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import lazydict [as 别名]
def update_opt(self, f, target, inputs, reg_coeff):
self.target = target
self.reg_coeff = reg_coeff
params = target.get_params(trainable=True)
constraint_grads = theano.grad(
f, wrt=params, disconnected_inputs='warn')
xs = tuple([ext.new_tensor_like("%s x" % p.name, p) for p in params])
def Hx_plain():
Hx_plain_splits = TT.grad(
TT.sum([TT.sum(g * x)
for g, x in zip(constraint_grads, xs)]),
wrt=params,
disconnected_inputs='warn'
)
return TT.concatenate([TT.flatten(s) for s in Hx_plain_splits])
self.opt_fun = ext.lazydict(
f_Hx_plain=lambda: ext.compile_function(
inputs=inputs + xs,
outputs=Hx_plain(),
log_name="f_Hx_plain",
),
)
示例3: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import lazydict [as 别名]
def update_opt(self, loss, target, inputs, extra_inputs=None, **kwargs):
"""
:param loss: Symbolic expression for the loss function.
:param target: A parameterized object to optimize over. It should implement methods of the
:class:`rllab.core.paramerized.Parameterized` class.
:param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon.
:param inputs: A list of symbolic variables as inputs
:return: No return value.
"""
self._target = target
self._train_op = self._tf_optimizer.minimize(loss, var_list=target.get_params(trainable=True))
# updates = OrderedDict([(k, v.astype(k.dtype)) for k, v in updates.iteritems()])
if extra_inputs is None:
extra_inputs = list()
self._input_vars = inputs + extra_inputs
self._opt_fun = ext.lazydict(
f_loss=lambda: tensor_utils.compile_function(inputs + extra_inputs, loss),
)
示例4: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import lazydict [as 别名]
def update_opt(self, loss, target, inputs, extra_inputs=None, **kwargs):
"""
:param loss: Symbolic expression for the loss function.
:param target: A parameterized object to optimize over. It should implement methods of the
:class:`rllab.core.paramerized.Parameterized` class.
:param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon.
:param inputs: A list of symbolic variables as inputs
:return: No return value.
"""
self._target = target
self._train_op = self._tf_optimizer.minimize(loss, var_list=target.get_params(trainable=True))
# updates = OrderedDict([(k, v.astype(k.dtype)) for k, v in updates.iteritems()])
if extra_inputs is None:
extra_inputs = list()
self._input_vars = inputs + extra_inputs
f_loss=tensor_utils.compile_function(inputs + extra_inputs, loss)
self._opt_fun = ext.lazydict(
f_loss=lambda: f_loss,
#f_loss=lambda: tensor_utils.compile_function(inputs + extra_inputs, loss),
)
示例5: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import lazydict [as 别名]
def update_opt(self, loss, target, inputs, extra_inputs=None, gradients=None, *args, **kwargs):
"""
:param loss: Symbolic expression for the loss function.
:param target: A parameterized object to optimize over. It should implement methods of the
:class:`rllab.core.paramerized.Parameterized` class.
:param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon.
:param inputs: A list of symbolic variables as inputs
:param gradients: symbolic expressions for the gradients of trainable parameters of the target. By default
this will be computed by calling theano.grad
:return: No return value.
"""
self._target = target
def get_opt_output(gradients):
if gradients is None:
gradients = theano.grad(loss, target.get_params(trainable=True))
flat_grad = flatten_tensor_variables(gradients)
return [loss.astype('float64'), flat_grad.astype('float64')]
if extra_inputs is None:
extra_inputs = list()
self._opt_fun = lazydict(
f_loss=lambda: compile_function(inputs + extra_inputs, loss),
f_opt=lambda: compile_function(
inputs=inputs + extra_inputs,
outputs=get_opt_output(gradients),
)
)
示例6: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import lazydict [as 别名]
def update_opt(self, loss, target, inputs, extra_inputs=None, gradients=None, **kwargs):
"""
:param loss: Symbolic expression for the loss function.
:param target: A parameterized object to optimize over. It should implement methods of the
:class:`rllab.core.paramerized.Parameterized` class.
:param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon.
:param inputs: A list of symbolic variables as inputs
:return: No return value.
"""
self._target = target
if gradients is None:
gradients = theano.grad(loss, target.get_params(trainable=True), disconnected_inputs='ignore')
updates = self._update_method(gradients, target.get_params(trainable=True))
updates = OrderedDict([(k, v.astype(k.dtype)) for k, v in updates.items()])
if extra_inputs is None:
extra_inputs = list()
self._opt_fun = ext.lazydict(
f_loss=lambda: ext.compile_function(inputs + extra_inputs, loss),
f_opt=lambda: ext.compile_function(
inputs=inputs + extra_inputs,
outputs=loss,
updates=updates,
)
)
示例7: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import lazydict [as 别名]
def update_opt(self, loss, target, leq_constraint, inputs, constraint_name="constraint", *args, **kwargs):
"""
:param loss: Symbolic expression for the loss function.
:param target: A parameterized object to optimize over. It should implement methods of the
:class:`rllab.core.paramerized.Parameterized` class.
:param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon.
:param inputs: A list of symbolic variables as inputs
:return: No return value.
"""
constraint_term, constraint_value = leq_constraint
penalty_var = TT.scalar("penalty")
penalized_loss = loss + penalty_var * constraint_term
self._target = target
self._max_constraint_val = constraint_value
self._constraint_name = constraint_name
def get_opt_output():
flat_grad = flatten_tensor_variables(theano.grad(
penalized_loss, target.get_params(trainable=True), disconnected_inputs='ignore'
))
return [penalized_loss.astype('float64'), flat_grad.astype('float64')]
self._opt_fun = lazydict(
f_loss=lambda: compile_function(inputs, loss, log_name="f_loss"),
f_constraint=lambda: compile_function(inputs, constraint_term, log_name="f_constraint"),
f_penalized_loss=lambda: compile_function(
inputs=inputs + [penalty_var],
outputs=[penalized_loss, loss, constraint_term],
log_name="f_penalized_loss",
),
f_opt=lambda: compile_function(
inputs=inputs + [penalty_var],
outputs=get_opt_output(),
log_name="f_opt"
)
)
示例8: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import lazydict [as 别名]
def update_opt(self, loss, target, inputs, extra_inputs=None, *args, **kwargs):
"""
:param loss: Symbolic expression for the loss function.
:param target: A parameterized object to optimize over. It should implement methods of the
:class:`rllab.core.paramerized.Parameterized` class.
:param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon.
:param inputs: A list of symbolic variables as inputs
:return: No return value.
"""
self._target = target
def get_opt_output():
flat_grad = tensor_utils.flatten_tensor_variables(tf.gradients(loss, target.get_params(trainable=True)))
return [tf.cast(loss, tf.float64), tf.cast(flat_grad, tf.float64)]
if extra_inputs is None:
extra_inputs = list()
self._opt_fun = ext.lazydict(
f_loss=lambda: tensor_utils.compile_function(inputs + extra_inputs, loss),
f_opt=lambda: tensor_utils.compile_function(
inputs=inputs + extra_inputs,
outputs=get_opt_output(),
)
)
示例9: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import lazydict [as 别名]
def update_opt(self, f, target, inputs, reg_coeff):
self.target = target
self.reg_coeff = reg_coeff
params = target.get_params(trainable=True)
constraint_grads = tf.gradients(f, xs=params)
for idx, (grad, param) in enumerate(zip(constraint_grads, params)):
if grad is None:
constraint_grads[idx] = tf.zeros_like(param)
xs = tuple([tensor_utils.new_tensor_like(p.name.split(":")[0], p) for p in params])
def Hx_plain():
Hx_plain_splits = tf.gradients(
tf.reduce_sum(
tf.pack([tf.reduce_sum(g * x) for g, x in zip(constraint_grads, xs)])
),
params
)
for idx, (Hx, param) in enumerate(zip(Hx_plain_splits, params)):
if Hx is None:
Hx_plain_splits[idx] = tf.zeros_like(param)
return tensor_utils.flatten_tensor_variables(Hx_plain_splits)
self.opt_fun = ext.lazydict(
f_Hx_plain=lambda: tensor_utils.compile_function(
inputs=inputs + xs,
outputs=Hx_plain(),
log_name="f_Hx_plain",
),
)
示例10: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import lazydict [as 别名]
def update_opt(self, f, target, inputs, reg_coeff):
self.target = target
self.reg_coeff = reg_coeff
params = target.get_params(trainable=True)
constraint_grads = tf.gradients(f, xs=params)
for idx, (grad, param) in enumerate(zip(constraint_grads, params)):
if grad is None:
constraint_grads[idx] = tf.zeros_like(param)
xs = tuple([tensor_utils.new_tensor_like(p.name.split(":")[0], p) for p in params])
def Hx_plain():
Hx_plain_splits = tf.gradients(
tf.reduce_sum(
tf.stack([tf.reduce_sum(g * x) for g, x in zip(constraint_grads, xs)])
),
params
)
for idx, (Hx, param) in enumerate(zip(Hx_plain_splits, params)):
if Hx is None:
Hx_plain_splits[idx] = tf.zeros_like(param)
return tensor_utils.flatten_tensor_variables(Hx_plain_splits)
f_Hx_plain = tensor_utils.compile_function(
inputs=inputs + xs,
outputs=Hx_plain(),
log_name="f_Hx_plain",
)
self.opt_fun = ext.lazydict(
f_Hx_plain=lambda: f_Hx_plain,
)
示例11: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import lazydict [as 别名]
def update_opt(self, loss, target, inputs, extra_inputs=None, *args, **kwargs):
"""
:param loss: Symbolic expression for the loss function.
:param target: A parameterized object to optimize over. It should implement methods of the
:class:`rllab.core.paramerized.Parameterized` class.
:param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon.
:param inputs: A list of symbolic variables as inputs
:return: No return value.
"""
self._target = target
def get_opt_output():
flat_grad = tensor_utils.flatten_tensor_variables(
tf.gradients(loss, target.get_params(trainable=True)))
return [tf.cast(loss, tf.float64), tf.cast(flat_grad, tf.float64)]
if extra_inputs is None:
extra_inputs = list()
self._opt_fun = ext.lazydict(
f_loss=lambda: tensor_utils.compile_function(
inputs + extra_inputs, loss),
f_opt=lambda: tensor_utils.compile_function(
inputs=inputs + extra_inputs,
outputs=get_opt_output(),
)
)
示例12: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import lazydict [as 别名]
def update_opt(self, loss, target, inputs, extra_inputs=None, **kwargs):
"""
:param loss: Symbolic expression for the loss function.
:param target: A parameterized object to optimize over. It should implement methods of the
:class:`rllab.core.paramerized.Parameterized` class.
:param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon.
:param inputs: A list of symbolic variables as inputs
:return: No return value.
"""
self._target = target
self._train_op = self._tf_optimizer.minimize(
loss, var_list=target.get_params(trainable=True))
# define operations for updating prior.
update_mus = [(l.bayesreg.hyperparams['empirical'], l.bayesreg.w_mu.assign(
l.W_mu)) for l in target.layers if hasattr(l, 'bayesreg')]
update_rhos = [(l.bayesreg.hyperparams['empirical'], l.bayesreg.w_sig.assign(tf.log(1.0 + tf.exp(l.W_rho))))
for l in target.layers if hasattr(l, 'bayesreg')]
self._update_priors_ops = update_mus + update_rhos
# updates = OrderedDict([(k, v.astype(k.dtype)) for k, v in updates.iteritems()])
if extra_inputs is None:
extra_inputs = list()
self._input_vars = inputs + extra_inputs
self._opt_fun = ext.lazydict(
f_loss=lambda: tensor_utils.compile_function(
inputs + extra_inputs, loss),
)
if kwargs.has_key('like_loss'):
def l_loss(): return tensor_utils.compile_function(
inputs + extra_inputs, kwargs['like_loss'])
self._opt_fun.set('l_loss', l_loss)
if kwargs.has_key('cmpx_loss'):
def c_loss(): return tensor_utils.compile_function(
inputs + extra_inputs, kwargs['cmpx_loss'])
self._opt_fun.set('c_loss', c_loss)
示例13: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import lazydict [as 别名]
def update_opt(self, f, target, inputs, reg_coeff):
self.target = target
self.reg_coeff = reg_coeff
params = target.get_params(trainable=True)
constraint_grads = tf.gradients(f, xs=params)
for idx, (grad, param) in enumerate(zip(constraint_grads, params)):
if grad is None:
constraint_grads[idx] = tf.zeros_like(param)
xs = tuple([tensor_utils.new_tensor_like(
p.name.split(":")[0], p) for p in params])
def Hx_plain():
Hx_plain_splits = tf.gradients(
tf.reduce_sum(
tf.pack([tf.reduce_sum(g * x)
for g, x in zip(constraint_grads, xs)])
),
params
)
for idx, (Hx, param) in enumerate(zip(Hx_plain_splits, params)):
if Hx is None:
Hx_plain_splits[idx] = tf.zeros_like(param)
return tensor_utils.flatten_tensor_variables(Hx_plain_splits)
self.opt_fun = ext.lazydict(
f_Hx_plain=lambda: tensor_utils.compile_function(
inputs=inputs + xs,
outputs=Hx_plain(),
log_name="f_Hx_plain",
),
)
示例14: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import lazydict [as 别名]
def update_opt(self, f, target, inputs, reg_coeff):
self.target = target
self.reg_coeff = reg_coeff
params = target.get_params(trainable=True)
constraint_grads = tf.gradients(f, xs=params)
for idx, (grad, param) in enumerate(zip(constraint_grads, params)):
if grad is None:
constraint_grads[idx] = tf.zeros_like(param)
xs = tuple([tensor_utils.new_tensor_like(p.name.split(":")[0], p) for p in params])
def Hx_plain():
Hx_plain_splits = tf.gradients(
tf.reduce_sum(
tf.stack([tf.reduce_sum(g * x) for g, x in zip(constraint_grads, xs)])
),
params
)
for idx, (Hx, param) in enumerate(zip(Hx_plain_splits, params)):
if Hx is None:
Hx_plain_splits[idx] = tf.zeros_like(param)
return tensor_utils.flatten_tensor_variables(Hx_plain_splits)
self.opt_fun = ext.lazydict(
f_Hx_plain=lambda: tensor_utils.compile_function(
inputs=inputs + xs,
outputs=Hx_plain(),
log_name="f_Hx_plain",
),
)
示例15: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import lazydict [as 别名]
def update_opt(self, loss, target, inputs, extra_inputs=None, **kwargs):
# Initializes the update opt used in the optimization
"""
:param loss: Symbolic expression for the loss function.
:param target: A parameterized object to optimize over. It should implement methods of the
:class:`rllab.core.paramerized.Parameterized` class.
:param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon.
:param inputs: A list of symbolic variables as inputs
:return: No return value.
"""
self._target = target
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if update_ops:
# for batch norm
updates = tf.group(*update_ops)
with tf.control_dependencies([updates]):
self._train_op = self._tf_optimizer.minimize(loss, var_list=target.get_params(trainable=True))
if self._init_tf_optimizer is not None:
self._init_train_op = self._init_tf_optimizer.minimize(loss, var_list=target.get_params(trainable=True))
else:
self._train_op = self._tf_optimizer.minimize(loss, var_list=target.get_params(trainable=True))
if self._init_tf_optimizer is not None:
self._init_train_op = self._init_tf_optimizer.minimize(loss, var_list=target.get_params(trainable=True))
if extra_inputs is None:
extra_inputs = list()
self._input_vars = inputs + extra_inputs
self._opt_fun = ext.lazydict(
f_loss=lambda: tensor_utils.compile_function(inputs + extra_inputs, loss),
)
self.debug_loss = loss
self.debug_vars = target.get_params(trainable=True)
self.debug_target = target