本文整理汇总了Python中rllab.misc.ext.flatten_tensor_variables方法的典型用法代码示例。如果您正苦于以下问题:Python ext.flatten_tensor_variables方法的具体用法?Python ext.flatten_tensor_variables怎么用?Python ext.flatten_tensor_variables使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类rllab.misc.ext
的用法示例。
在下文中一共展示了ext.flatten_tensor_variables方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import flatten_tensor_variables [as 别名]
def update_opt(self, loss, target, inputs, extra_inputs=None, gradients=None, *args, **kwargs):
"""
:param loss: Symbolic expression for the loss function.
:param target: A parameterized object to optimize over. It should implement methods of the
:class:`rllab.core.paramerized.Parameterized` class.
:param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon.
:param inputs: A list of symbolic variables as inputs
:param gradients: symbolic expressions for the gradients of trainable parameters of the target. By default
this will be computed by calling theano.grad
:return: No return value.
"""
self._target = target
def get_opt_output(gradients):
if gradients is None:
gradients = theano.grad(loss, target.get_params(trainable=True))
flat_grad = flatten_tensor_variables(gradients)
return [loss.astype('float64'), flat_grad.astype('float64')]
if extra_inputs is None:
extra_inputs = list()
self._opt_fun = lazydict(
f_loss=lambda: compile_function(inputs + extra_inputs, loss),
f_opt=lambda: compile_function(
inputs=inputs + extra_inputs,
outputs=get_opt_output(gradients),
)
)
示例2: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import flatten_tensor_variables [as 别名]
def update_opt(self, f, target, inputs, reg_coeff):
self.target = target
self.reg_coeff = reg_coeff
params = target.get_params(trainable=True)
constraint_grads = theano.grad(
f, wrt=params, disconnected_inputs='warn')
flat_grad = ext.flatten_tensor_variables(constraint_grads)
def f_Hx_plain(*args):
inputs_ = args[:len(inputs)]
xs = args[len(inputs):]
flat_xs = np.concatenate([np.reshape(x, (-1,)) for x in xs])
param_val = self.target.get_param_values(trainable=True)
eps = np.cast['float32'](
self.base_eps / (np.linalg.norm(param_val) + 1e-8))
self.target.set_param_values(
param_val + eps * flat_xs, trainable=True)
flat_grad_dvplus = self.opt_fun["f_grad"](*inputs_)
if self.symmetric:
self.target.set_param_values(
param_val - eps * flat_xs, trainable=True)
flat_grad_dvminus = self.opt_fun["f_grad"](*inputs_)
hx = (flat_grad_dvplus - flat_grad_dvminus) / (2 * eps)
self.target.set_param_values(param_val, trainable=True)
else:
self.target.set_param_values(param_val, trainable=True)
flat_grad = self.opt_fun["f_grad"](*inputs_)
hx = (flat_grad_dvplus - flat_grad) / eps
return hx
self.opt_fun = ext.lazydict(
f_grad=lambda: ext.compile_function(
inputs=inputs,
outputs=flat_grad,
log_name="f_grad",
),
f_Hx_plain=lambda: f_Hx_plain,
)
示例3: update_opt
# 需要导入模块: from rllab.misc import ext [as 别名]
# 或者: from rllab.misc.ext import flatten_tensor_variables [as 别名]
def update_opt(self, loss, target, leq_constraint, inputs, constraint_name="constraint", *args, **kwargs):
"""
:param loss: Symbolic expression for the loss function.
:param target: A parameterized object to optimize over. It should implement methods of the
:class:`rllab.core.paramerized.Parameterized` class.
:param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon.
:param inputs: A list of symbolic variables as inputs
:return: No return value.
"""
constraint_term, constraint_value = leq_constraint
penalty_var = TT.scalar("penalty")
penalized_loss = loss + penalty_var * constraint_term
self._target = target
self._max_constraint_val = constraint_value
self._constraint_name = constraint_name
def get_opt_output():
flat_grad = flatten_tensor_variables(theano.grad(
penalized_loss, target.get_params(trainable=True), disconnected_inputs='ignore'
))
return [penalized_loss.astype('float64'), flat_grad.astype('float64')]
self._opt_fun = lazydict(
f_loss=lambda: compile_function(inputs, loss, log_name="f_loss"),
f_constraint=lambda: compile_function(inputs, constraint_term, log_name="f_constraint"),
f_penalized_loss=lambda: compile_function(
inputs=inputs + [penalty_var],
outputs=[penalized_loss, loss, constraint_term],
log_name="f_penalized_loss",
),
f_opt=lambda: compile_function(
inputs=inputs + [penalty_var],
outputs=get_opt_output(),
log_name="f_opt"
)
)