当前位置: 首页>>代码示例>>Python>>正文


Python ColortableLayer.opacity方法代码示例

本文整理汇总了Python中volumina.api.ColortableLayer.opacity方法的典型用法代码示例。如果您正苦于以下问题:Python ColortableLayer.opacity方法的具体用法?Python ColortableLayer.opacity怎么用?Python ColortableLayer.opacity使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在volumina.api.ColortableLayer的用法示例。


在下文中一共展示了ColortableLayer.opacity方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: setupLayers

# 需要导入模块: from volumina.api import ColortableLayer [as 别名]
# 或者: from volumina.api.ColortableLayer import opacity [as 别名]
    def setupLayers(self):
        layers = []
        op = self.topLevelOperatorView
        binct = [QColor(Qt.black), QColor(Qt.white)]
        #binct[0] = 0
        ct = create_default_16bit()
        # associate label 0 with black/transparent?
        ct[0] = 0

        # Show the cached output, since it goes through a blocked cache
        if op.CachedOutput.ready():
            outputSrc = LazyflowSource(op.CachedOutput)
            outputLayer = ColortableLayer(outputSrc, ct)
            outputLayer.name = "Connected Components"
            outputLayer.visible = False
            outputLayer.opacity = 1.0
            outputLayer.setToolTip("Results of connected component analysis")
            layers.append(outputLayer)

        if op.Input.ready():
            rawSrc = LazyflowSource(op.Input)
            rawLayer = ColortableLayer(outputSrc, binct)
            #rawLayer = self.createStandardLayerFromSlot(op.Input)
            rawLayer.name = "Raw data"
            rawLayer.visible = True
            rawLayer.opacity = 1.0
            layers.append(rawLayer)

        return layers
开发者ID:JaimeIvanCervantes,项目名称:ilastik,代码行数:31,代码来源:connectedComponentsGui.py

示例2: _initPredictionLayers

# 需要导入模块: from volumina.api import ColortableLayer [as 别名]
# 或者: from volumina.api.ColortableLayer import opacity [as 别名]
    def _initPredictionLayers(self, predictionSlot):
        layers = []

        opLane = self.topLevelOperatorView
        colors = opLane.PmapColors.value
        names = opLane.LabelNames.value

        # Use a slicer to provide a separate slot for each channel layer
        #opSlicer = OpMultiArraySlicer2( parent=opLane.viewed_operator() )
        #opSlicer.Input.connect( predictionSlot )
        #opSlicer.AxisFlag.setValue('c')

        if predictionSlot.ready() :
            from volumina import colortables
            predictLayer = ColortableLayer(LazyflowSource(predictionSlot), colorTable = colortables.jet(), normalize = 'auto')
            #predictLayer = AlphaModulatedLayer( predictsrc,
            #                                    tintColor=QColor(*colors[channel]),
            #                                    range=(0.0, 1.0),
            #                                    normalize=(0.0, 1.0) )
            predictLayer.opacity = 0.25
            predictLayer.visible = True
            predictLayer.name = "Prediction"
            layers.append(predictLayer)

        return layers
开发者ID:JensNRAD,项目名称:ilastik_public,代码行数:27,代码来源:countingBatchResultsGui.py

示例3: setupLayers

# 需要导入模块: from volumina.api import ColortableLayer [as 别名]
# 或者: from volumina.api.ColortableLayer import opacity [as 别名]
    def setupLayers(self):
        mainOperator = self.topLevelOperatorView
        layers = []

        if mainOperator.ObjectCenterImage.ready():
            self.centerimagesrc = LazyflowSource(mainOperator.ObjectCenterImage)
            redct = [0, QColor(255, 0, 0).rgba()]
            layer = ColortableLayer(self.centerimagesrc, redct)
            layer.name = "Object centers"
            layer.setToolTip("Object center positions, marked with a little red cross")
            layer.visible = False
            layers.append(layer)

        ct = colortables.create_default_16bit()
        if mainOperator.LabelImage.ready():
            self.objectssrc = LazyflowSource(mainOperator.LabelImage)
            self.objectssrc.setObjectName("LabelImage LazyflowSrc")
            ct[0] = QColor(0, 0, 0, 0).rgba() # make 0 transparent
            layer = ColortableLayer(self.objectssrc, ct)
            layer.name = "Objects (connected components)"
            layer.setToolTip("Segmented objects, shown in different colors")
            layer.visible = False
            layer.opacity = 0.5
            layers.append(layer)

        # white foreground on transparent background, even for labeled images
        binct = [QColor(255, 255, 255, 255).rgba()]*65536
        binct[0] = 0
        if mainOperator.BinaryImage.ready():
            self.binaryimagesrc = LazyflowSource(mainOperator.BinaryImage)
            self.binaryimagesrc.setObjectName("Binary LazyflowSrc")
            layer = ColortableLayer(self.binaryimagesrc, binct)
            layer.name = "Binary image"
            layer.setToolTip("Segmented objects, binary mask")
            layers.append(layer)

        ## raw data layer
        self.rawsrc = None
        self.rawsrc = LazyflowSource(mainOperator.RawImage)
        self.rawsrc.setObjectName("Raw Lazyflow Src")
        layerraw = GrayscaleLayer(self.rawsrc)
        layerraw.name = "Raw data"
        layers.insert(len(layers), layerraw)

        mainOperator.RawImage.notifyReady(self._onReady)
        self.__cleanup_fns.append( partial( mainOperator.RawImage.unregisterReady, self._onReady ) )

        mainOperator.RawImage.notifyMetaChanged(self._onMetaChanged)
        self.__cleanup_fns.append( partial( mainOperator.RawImage.unregisterMetaChanged, self._onMetaChanged ) )

        if mainOperator.BinaryImage.meta.shape:
            self.editor.dataShape = mainOperator.BinaryImage.meta.shape

        mainOperator.BinaryImage.notifyMetaChanged(self._onMetaChanged)
        self.__cleanup_fns.append( partial( mainOperator.BinaryImage.unregisterMetaChanged, self._onMetaChanged ) )

        return layers
开发者ID:burcin,项目名称:ilastik,代码行数:59,代码来源:objectExtractionGui.py

示例4: setupLayers

# 需要导入模块: from volumina.api import ColortableLayer [as 别名]
# 或者: from volumina.api.ColortableLayer import opacity [as 别名]
    def setupLayers(self):
        """
        Called by our base class when one of our data slots has changed.
        This function creates a layer for each slot we want displayed in the volume editor.
        """
        # Base class provides the label layer.
        layers = super(Counting3dGui, self).setupLayers()

        # Add each of the predictions
        labels = self.labelListData
     


        slots = {'density' : self.op.Density}

        for name, slot in slots.items():
            if slot.ready():
                from volumina import colortables
                layer = ColortableLayer(LazyflowSource(slot), colorTable = colortables.jet(), normalize = 'auto')
                layer.name = name
                layers.append(layer)


        boxlabelsrc = LazyflowSinkSource(self.op.BoxLabelImages,self.op.BoxLabelInputs )
        boxlabellayer = ColortableLayer(boxlabelsrc, colorTable = self._colorTable16, direct = False)
        boxlabellayer.name = "boxLabels"
        boxlabellayer.opacity = 0.3
        layers.append(boxlabellayer)
        self.boxlabelsrc = boxlabelsrc


        inputDataSlot = self.topLevelOperatorView.InputImages
        if inputDataSlot.ready():
            inputLayer = self.createStandardLayerFromSlot( inputDataSlot )
            inputLayer.name = "Input Data"
            inputLayer.visible = True
            inputLayer.opacity = 1.0

            def toggleTopToBottom():
                index = self.layerstack.layerIndex( inputLayer )
                self.layerstack.selectRow( index )
                if index == 0:
                    self.layerstack.moveSelectedToBottom()
                else:
                    self.layerstack.moveSelectedToTop()

            inputLayer.shortcutRegistration = (
                "Prediction Layers",
                "Bring Input To Top/Bottom",
                QShortcut( QKeySequence("i"), self.viewerControlWidget(), toggleTopToBottom),
                inputLayer )
            layers.append(inputLayer)
        
        self.handleLabelSelectionChange()
        return layers
开发者ID:bheuer,项目名称:ilastik,代码行数:57,代码来源:counting3dGui.py

示例5: setupLayers

# 需要导入模块: from volumina.api import ColortableLayer [as 别名]
# 或者: from volumina.api.ColortableLayer import opacity [as 别名]
    def setupLayers(self):
        mainOperator = self.topLevelOperatorView
        layers = []

        if mainOperator.ObjectCenterImage.ready():
            self.centerimagesrc = LazyflowSource(mainOperator.ObjectCenterImage)
            #layer = RGBALayer(red=ConstantSource(255), alpha=self.centerimagesrc)
            redct = [0, QColor(255, 0, 0).rgba()]
            layer = ColortableLayer(self.centerimagesrc, redct)
            layer.name = "Object Centers"
            layer.visible = False
            layers.append(layer)

        ct = colortables.create_default_16bit()
        if mainOperator.LabelImage.ready():
            self.objectssrc = LazyflowSource(mainOperator.LabelImage)
            self.objectssrc.setObjectName("LabelImage LazyflowSrc")
            ct[0] = QColor(0, 0, 0, 0).rgba() # make 0 transparent
            layer = ColortableLayer(self.objectssrc, ct)
            layer.name = "Label Image"
            layer.visible = False
            layer.opacity = 0.5
            layers.append(layer)

        # white foreground on transparent background
        binct = [QColor(0, 0, 0, 0).rgba(), QColor(255, 255, 255, 255).rgba()]
        if mainOperator.BinaryImage.ready():
            self.binaryimagesrc = LazyflowSource(mainOperator.BinaryImage)
            self.binaryimagesrc.setObjectName("Binary LazyflowSrc")
            layer = ColortableLayer(self.binaryimagesrc, binct)
            layer.name = "Binary Image"
            layers.append(layer)

        ## raw data layer
        self.rawsrc = None
        self.rawsrc = LazyflowSource(mainOperator.RawImage)
        self.rawsrc.setObjectName("Raw Lazyflow Src")
        layerraw = GrayscaleLayer(self.rawsrc)
        layerraw.name = "Raw"
        layers.insert(len(layers), layerraw)

        mainOperator.RawImage.notifyReady(self._onReady)
        mainOperator.RawImage.notifyMetaChanged(self._onMetaChanged)

        if mainOperator.BinaryImage.meta.shape:
            self.editor.dataShape = mainOperator.BinaryImage.meta.shape
        mainOperator.BinaryImage.notifyMetaChanged(self._onMetaChanged)

        return layers
开发者ID:bheuer,项目名称:ilastik,代码行数:51,代码来源:objectExtractionGui.py

示例6: setupLayers

# 需要导入模块: from volumina.api import ColortableLayer [as 别名]
# 或者: from volumina.api.ColortableLayer import opacity [as 别名]
    def setupLayers( self ):        
        layers = []
                        
        self.ct[0] = QColor(0,0,0,0).rgba() # make 0 transparent        
        self.ct[255] = QColor(0,0,0,255).rgba() # make -1 black
        self.ct[-1] = QColor(0,0,0,255).rgba()
        self.trackingsrc = LazyflowSource( self.topLevelOperatorView.TrackImage )
        trackingLayer = ColortableLayer( self.trackingsrc, self.ct )
        trackingLayer.name = "Manual Tracking"
        trackingLayer.visible = True
        trackingLayer.opacity = 0.8

        def toggleTrackingVisibility():
            trackingLayer.visible = not trackingLayer.visible
            
        trackingLayer.shortcutRegistration = (
                "Layer Visibilities",
                "Toggle Manual Tracking Layer Visibility",
                QtGui.QShortcut( QtGui.QKeySequence("e"), self.viewerControlWidget(), toggleTrackingVisibility),
                trackingLayer )
        layers.append(trackingLayer)
        
        
        ct = colortables.create_random_16bit()
        ct[1] = QColor(230,0,0,150).rgba()
        ct[0] = QColor(0,0,0,0).rgba() # make 0 transparent
        self.untrackedsrc = LazyflowSource( self.topLevelOperatorView.UntrackedImage )
        untrackedLayer = ColortableLayer( self.untrackedsrc, ct )
        untrackedLayer.name = "Untracked Objects"
        untrackedLayer.visible = False
        untrackedLayer.opacity = 0.8
        layers.append(untrackedLayer)
        
        self.objectssrc = LazyflowSource( self.topLevelOperatorView.BinaryImage )
        ct = colortables.create_random_16bit()
        ct[0] = QColor(0,0,0,0).rgba() # make 0 transparent
        ct[1] = QColor(255,255,0,100).rgba() 
        objLayer = ColortableLayer( self.objectssrc, ct )
        objLayer.name = "Objects"
        objLayer.opacity = 0.8
        objLayer.visible = True
        
        def toggleObjectVisibility():
            objLayer.visible = not objLayer.visible
            
        objLayer.shortcutRegistration = (
                "Layer Visibilities",
                "Toggle Objects Layer Visibility",
                QtGui.QShortcut( QtGui.QKeySequence("r"), self.viewerControlWidget(), toggleObjectVisibility),
                objLayer )
        
        layers.append(objLayer)


        ## raw data layer
        self.rawsrc = None
        self.rawsrc = LazyflowSource( self.mainOperator.RawImage )
        rawLayer = GrayscaleLayer( self.rawsrc )
        rawLayer.name = "Raw"        
        layers.insert( len(layers), rawLayer )   
        
        
        if self.topLevelOperatorView.LabelImage.meta.shape:
            self.editor.dataShape = self.topLevelOperatorView.LabelImage.meta.shape    
        
        self.topLevelOperatorView.RawImage.notifyReady( self._onReady )
        self.topLevelOperatorView.RawImage.notifyMetaChanged( self._onMetaChanged )
        
        self._setDivisionsList()
        self._setActiveTrackList()
        
        return layers
开发者ID:jennyhong,项目名称:ilastik,代码行数:74,代码来源:manualTrackingGui.py

示例7: setupLayers

# 需要导入模块: from volumina.api import ColortableLayer [as 别名]
# 或者: from volumina.api.ColortableLayer import opacity [as 别名]
    def setupLayers(self):
        layers = []        
        op = self.topLevelOperatorView
        binct = [QColor(Qt.black), QColor(Qt.white)]
        ct = self._createDefault16ColorColorTable()
        ct[0]=0
        # Show the cached output, since it goes through a blocked cache
        
        if op.CachedOutput.ready():
            outputSrc = LazyflowSource(op.CachedOutput)
            outputLayer = ColortableLayer(outputSrc, binct)
            outputLayer.name = "Output (Cached)"
            outputLayer.visible = False
            outputLayer.opacity = 1.0
            layers.append(outputLayer)

        #FIXME: We have to do that, because lazyflow doesn't have a way to make an operator partially ready
        curIndex = self._drawer.tabWidget.currentIndex()
        if curIndex==1:
            if op.BigRegions.ready():
                lowThresholdSrc = LazyflowSource(op.BigRegions)
                lowThresholdLayer = ColortableLayer(lowThresholdSrc, binct)
                lowThresholdLayer.name = "Big Regions"
                lowThresholdLayer.visible = False
                lowThresholdLayer.opacity = 1.0
                layers.append(lowThresholdLayer)
    
            if op.FilteredSmallLabels.ready():
                filteredSmallLabelsLayer = self.createStandardLayerFromSlot( op.FilteredSmallLabels )
                filteredSmallLabelsLayer.name = "Filtered Small Labels"
                filteredSmallLabelsLayer.visible = False
                filteredSmallLabelsLayer.opacity = 1.0
                layers.append(filteredSmallLabelsLayer)
    
            if op.SmallRegions.ready():
                highThresholdSrc = LazyflowSource(op.SmallRegions)
                highThresholdLayer = ColortableLayer(highThresholdSrc, binct)
                highThresholdLayer.name = "Small Regions"
                highThresholdLayer.visible = False
                highThresholdLayer.opacity = 1.0
                layers.append(highThresholdLayer)
        elif curIndex==0:
            if op.BeforeSizeFilter.ready():
                thSrc = LazyflowSource(op.BeforeSizeFilter)
                thLayer = ColortableLayer(thSrc, binct)
                thLayer.name = "Thresholded Labels"
                thLayer.visible = False
                thLayer.opacity = 1.0
                layers.append(thLayer)
        
        # Selected input channel, smoothed.
        if op.Smoothed.ready():
            smoothedLayer = self.createStandardLayerFromSlot( op.Smoothed )
            smoothedLayer.name = "Smoothed Input"
            smoothedLayer.visible = True
            smoothedLayer.opacity = 1.0
            layers.append(smoothedLayer)
        
        # Show the selected channel
        if op.InputChannel.ready():
            drange = op.InputChannel.meta.drange
            if drange is None:
                drange = (0.0, 1.0)
            channelSrc = LazyflowSource(op.InputChannel)
            channelLayer = AlphaModulatedLayer( channelSrc,
                                                tintColor=QColor(self._channelColors[op.Channel.value]),
                                                range=drange,
                                                normalize=drange )
            channelLayer.name = "Input Ch{}".format(op.Channel.value)
            channelLayer.opacity = 1.0
            #channelLayer.visible = channelIndex == op.Channel.value # By default, only the selected input channel is visible.    
            layers.append(channelLayer)
        
        # Show the raw input data
        rawSlot = self.topLevelOperatorView.RawInput
        if rawSlot.ready():
            rawLayer = self.createStandardLayerFromSlot( rawSlot )
            rawLayer.name = "Raw Data"
            rawLayer.visible = True
            rawLayer.opacity = 1.0
            layers.append(rawLayer)

        return layers
开发者ID:bheuer,项目名称:ilastik,代码行数:85,代码来源:thresholdTwoLevelsGui.py

示例8: setupLayers

# 需要导入模块: from volumina.api import ColortableLayer [as 别名]
# 或者: from volumina.api.ColortableLayer import opacity [as 别名]
    def setupLayers(self):
        """
        Called by our base class when one of our data slots has changed.
        This function creates a layer for each slot we want displayed in the volume editor.
        """
        # Base class provides the label layer.
        layers = super(PixelClassificationGui, self).setupLayers()

        ActionInfo = ShortcutManager.ActionInfo

        if ilastik_config.getboolean('ilastik', 'debug'):

            # Add the label projection layer.
            labelProjectionSlot = self.topLevelOperatorView.opLabelPipeline.opLabelArray.Projection2D
            if labelProjectionSlot.ready():
                projectionSrc = LazyflowSource(labelProjectionSlot)
                try:
                    # This colortable requires matplotlib
                    from volumina.colortables import jet
                    projectionLayer = ColortableLayer( projectionSrc, 
                                                       colorTable=[QColor(0,0,0,128).rgba()]+jet(N=255), 
                                                       normalize=(0.0, 1.0) )
                except (ImportError, RuntimeError):
                    pass
                else:
                    projectionLayer.name = "Label Projection"
                    projectionLayer.visible = False
                    projectionLayer.opacity = 1.0
                    layers.append(projectionLayer)

        # Show the mask over everything except labels
        maskSlot = self.topLevelOperatorView.PredictionMasks
        if maskSlot.ready():
            maskLayer = self._create_binary_mask_layer_from_slot( maskSlot )
            maskLayer.name = "Mask"
            maskLayer.visible = True
            maskLayer.opacity = 1.0
            layers.append( maskLayer )

        # Add the uncertainty estimate layer
        uncertaintySlot = self.topLevelOperatorView.UncertaintyEstimate
        if uncertaintySlot.ready():
            uncertaintySrc = LazyflowSource(uncertaintySlot)
            uncertaintyLayer = AlphaModulatedLayer( uncertaintySrc,
                                                    tintColor=QColor( Qt.cyan ),
                                                    range=(0.0, 1.0),
                                                    normalize=(0.0, 1.0) )
            uncertaintyLayer.name = "Uncertainty"
            uncertaintyLayer.visible = False
            uncertaintyLayer.opacity = 1.0
            uncertaintyLayer.shortcutRegistration = ( "u", ActionInfo( "Prediction Layers",
                                                                       "Uncertainty",
                                                                       "Show/Hide Uncertainty",
                                                                       uncertaintyLayer.toggleVisible,
                                                                       self.viewerControlWidget(),
                                                                       uncertaintyLayer ) )
            layers.append(uncertaintyLayer)

        labels = self.labelListData

        # Add each of the segmentations
        for channel, segmentationSlot in enumerate(self.topLevelOperatorView.SegmentationChannels):
            if segmentationSlot.ready() and channel < len(labels):
                ref_label = labels[channel]
                segsrc = LazyflowSource(segmentationSlot)
                segLayer = AlphaModulatedLayer( segsrc,
                                                tintColor=ref_label.pmapColor(),
                                                range=(0.0, 1.0),
                                                normalize=(0.0, 1.0) )

                segLayer.opacity = 1
                segLayer.visible = False #self.labelingDrawerUi.liveUpdateButton.isChecked()
                segLayer.visibleChanged.connect(self.updateShowSegmentationCheckbox)

                def setLayerColor(c, segLayer_=segLayer, initializing=False):
                    if not initializing and segLayer_ not in self.layerstack:
                        # This layer has been removed from the layerstack already.
                        # Don't touch it.
                        return
                    segLayer_.tintColor = c
                    self._update_rendering()

                def setSegLayerName(n, segLayer_=segLayer, initializing=False):
                    if not initializing and segLayer_ not in self.layerstack:
                        # This layer has been removed from the layerstack already.
                        # Don't touch it.
                        return
                    oldname = segLayer_.name
                    newName = "Segmentation (%s)" % n
                    segLayer_.name = newName
                    if not self.render:
                        return
                    if oldname in self._renderedLayers:
                        label = self._renderedLayers.pop(oldname)
                        self._renderedLayers[newName] = label

                setSegLayerName(ref_label.name, initializing=True)

                ref_label.pmapColorChanged.connect(setLayerColor)
                ref_label.nameChanged.connect(setSegLayerName)
#.........这里部分代码省略.........
开发者ID:DerThorsten,项目名称:ilastik,代码行数:103,代码来源:pixelClassificationGui.py

示例9: setupLayers

# 需要导入模块: from volumina.api import ColortableLayer [as 别名]
# 或者: from volumina.api.ColortableLayer import opacity [as 别名]
    def setupLayers(self):

        # Base class provides the label layer.
        layers = super(ObjectClassificationGui, self).setupLayers()

        binarySlot = self.op.BinaryImages
        segmentedSlot = self.op.SegmentationImages
        rawSlot = self.op.RawImages

        #This is just for colors
        labels = self.labelListData
        
        for channel, probSlot in enumerate(self.op.PredictionProbabilityChannels):
            if probSlot.ready() and channel < len(labels):
                ref_label = labels[channel]
                probsrc = LazyflowSource(probSlot)
                probLayer = AlphaModulatedLayer( probsrc,
                                                 tintColor=ref_label.pmapColor(),
                                                 range=(0.0, 1.0),
                                                 normalize=(0.0, 1.0) )
                probLayer.opacity = 0.25
                #probLayer.visible = self.labelingDrawerUi.checkInteractive.isChecked()
                #False, because it's much faster to draw predictions without these layers below
                probLayer.visible = False
                probLayer.setToolTip("Probability that the object belongs to class {}".format(channel+1))
                    
                def setLayerColor(c, predictLayer_=probLayer, ch=channel, initializing=False):
                    if not initializing and predictLayer_ not in self.layerstack:
                        # This layer has been removed from the layerstack already.
                        # Don't touch it.
                        return
                    predictLayer_.tintColor = c

                def setLayerName(n, predictLayer_=probLayer, initializing=False):
                    if not initializing and predictLayer_ not in self.layerstack:
                        # This layer has been removed from the layerstack already.
                        # Don't touch it.
                        return
                    newName = "Prediction for %s" % n
                    predictLayer_.name = newName

                setLayerName(ref_label.name, initializing=True)
                ref_label.pmapColorChanged.connect(setLayerColor)
                ref_label.nameChanged.connect(setLayerName)
                layers.append(probLayer)

        predictionSlot = self.op.PredictionImages
        if predictionSlot.ready():
            predictsrc = LazyflowSource(predictionSlot)
            self._colorTable16_forpmaps[0] = 0
            predictLayer = ColortableLayer(predictsrc,
                                           colorTable=self._colorTable16_forpmaps)

            predictLayer.name = self.PREDICTION_LAYER_NAME
            predictLayer.ref_object = None
            predictLayer.visible = self.labelingDrawerUi.checkInteractive.isChecked()
            predictLayer.opacity = 0.5
            predictLayer.setToolTip("Classification results, assigning a label to each object")
            
            # This weakref stuff is a little more fancy than strictly necessary.
            # The idea is to use the weakref's callback to determine when this layer instance is destroyed by the garbage collector,
            #  and then we disconnect the signal that updates that layer.
            weak_predictLayer = weakref.ref( predictLayer )
            colortable_changed_callback = bind( self._setPredictionColorTable, weak_predictLayer )
            self._labelControlUi.labelListModel.dataChanged.connect( colortable_changed_callback )
            weak_predictLayer2 = weakref.ref( predictLayer, partial(self._disconnect_dataChange_callback, colortable_changed_callback) )
            # We have to make sure the weakref isn't destroyed because it is responsible for calling the callback.
            # Therefore, we retain it by adding it to a list.
            self._retained_weakrefs.append( weak_predictLayer2 )

            # Ensure we're up-to-date (in case this is the first time the prediction layer is being added.
            for row in range( self._labelControlUi.labelListModel.rowCount() ):
                self._setPredictionColorTableForRow( predictLayer, row )

            # put right after Labels, so that it is visible after hitting "live
            # predict".
            layers.insert(1, predictLayer)

        badObjectsSlot = self.op.BadObjectImages
        if badObjectsSlot.ready():
            ct_black = [0, QColor(Qt.black).rgba()]
            badSrc = LazyflowSource(badObjectsSlot)
            badLayer = ColortableLayer(badSrc, colorTable = ct_black)
            badLayer.name = "Ambiguous objects"
            badLayer.setToolTip("Objects with infinite or invalid values in features")
            badLayer.visible = False
            layers.append(badLayer)

        if segmentedSlot.ready():
            ct = colortables.create_default_16bit()
            objectssrc = LazyflowSource(segmentedSlot)
            ct[0] = QColor(0, 0, 0, 0).rgba() # make 0 transparent
            objLayer = ColortableLayer(objectssrc, ct)
            objLayer.name = "Objects"
            objLayer.opacity = 0.5
            objLayer.visible = False
            objLayer.setToolTip("Segmented objects (labeled image/connected components)")
            layers.append(objLayer)

        if binarySlot.ready():
#.........这里部分代码省略.........
开发者ID:CVML,项目名称:ilastik,代码行数:103,代码来源:objectClassificationGui.py

示例10: setupLayers

# 需要导入模块: from volumina.api import ColortableLayer [as 别名]
# 或者: from volumina.api.ColortableLayer import opacity [as 别名]
    def setupLayers(self):
        layers = []        
        op = self.topLevelOperatorView
        binct = [QColor(Qt.black), QColor(Qt.white)]
        binct[0] = 0
        ct = create_default_16bit()
        ct[0]=0
        # Show the cached output, since it goes through a blocked cache
        
        if op.CachedOutput.ready():
            outputSrc = LazyflowSource(op.CachedOutput)
            outputLayer = ColortableLayer(outputSrc, ct)
            outputLayer.name = "Final output"
            outputLayer.visible = False
            outputLayer.opacity = 1.0
            outputLayer.setToolTip("Results of thresholding and size filter")
            layers.append(outputLayer)
            
        if op.InputImage.ready():
            numChannels = op.InputImage.meta.getTaggedShape()['c']
            
            for channel in range(numChannels):
                channelProvider = OpSingleChannelSelector(parent=op.InputImage.getRealOperator().parent)
                channelProvider.Input.connect(op.InputImage)
                channelProvider.Index.setValue( channel )
                channelSrc = LazyflowSource( channelProvider.Output )
                inputChannelLayer = AlphaModulatedLayer( channelSrc,
                                                    tintColor=QColor(self._channelColors[channel]),
                                                    range=(0.0, 1.0),
                                                    normalize=(0.0, 1.0) )
                inputChannelLayer.opacity = 0.5
                inputChannelLayer.visible = True
                inputChannelLayer.name = "Input Channel " + str(channel)
                inputChannelLayer.setToolTip("Select input channel " + str(channel) + \
                                             " if this prediction image contains the objects of interest.")                    
                layers.append(inputChannelLayer)
                
        if self._showDebug:
            #FIXME: We have to do that, because lazyflow doesn't have a way to make an operator partially ready
            curIndex = self._drawer.tabWidget.currentIndex()
            if curIndex==1:
                if op.BigRegions.ready():
                    lowThresholdSrc = LazyflowSource(op.BigRegions)
                    lowThresholdLayer = ColortableLayer(lowThresholdSrc, binct)
                    lowThresholdLayer.name = "After low threshold"
                    lowThresholdLayer.visible = False
                    lowThresholdLayer.opacity = 1.0
                    lowThresholdLayer.setToolTip("Results of thresholding with the low pixel value threshold")
                    layers.append(lowThresholdLayer)
        
                if op.FilteredSmallLabels.ready():
                    filteredSmallLabelsLayer = self.createStandardLayerFromSlot( op.FilteredSmallLabels )
                    filteredSmallLabelsLayer.name = "After high threshold and size filter"
                    filteredSmallLabelsLayer.visible = False
                    filteredSmallLabelsLayer.opacity = 1.0
                    filteredSmallLabelsLayer.setToolTip("Results of thresholding with the high pixel value threshold,\
                                                         followed by the size filter")
                    layers.append(filteredSmallLabelsLayer)
        
                if op.SmallRegions.ready():
                    highThresholdSrc = LazyflowSource(op.SmallRegions)
                    highThresholdLayer = ColortableLayer(highThresholdSrc, binct)
                    highThresholdLayer.name = "After high threshold"
                    highThresholdLayer.visible = False
                    highThresholdLayer.opacity = 1.0
                    highThresholdLayer.setToolTip("Results of thresholding with the high pixel value threshold")
                    layers.append(highThresholdLayer)
            elif curIndex==0:
                if op.BeforeSizeFilter.ready():
                    thSrc = LazyflowSource(op.BeforeSizeFilter)
                    thLayer = ColortableLayer(thSrc, ct)
                    thLayer.name = "Before size filter"
                    thLayer.visible = False
                    thLayer.opacity = 1.0
                    thLayer.setToolTip("Results of thresholding before the size filter is applied")
                    layers.append(thLayer)
            
            # Selected input channel, smoothed.
            if op.Smoothed.ready():
                smoothedLayer = self.createStandardLayerFromSlot( op.Smoothed )
                smoothedLayer.name = "Smoothed input"
                smoothedLayer.visible = True
                smoothedLayer.opacity = 1.0
                smoothedLayer.setToolTip("Selected channel data, smoothed with a Gaussian with user-defined sigma")
                layers.append(smoothedLayer)
                
        
        # Show the raw input data
        rawSlot = self.topLevelOperatorView.RawInput
        if rawSlot.ready():
            rawLayer = self.createStandardLayerFromSlot( rawSlot )
            rawLayer.name = "Raw data"
            rawLayer.visible = True
            rawLayer.opacity = 1.0
            layers.append(rawLayer)

        return layers
开发者ID:JensNRAD,项目名称:ilastik_public,代码行数:99,代码来源:thresholdTwoLevelsGui.py

示例11: setupLayers

# 需要导入模块: from volumina.api import ColortableLayer [as 别名]
# 或者: from volumina.api.ColortableLayer import opacity [as 别名]
    def setupLayers( self ):
        layers = []

        # use same colortable for the following two generated layers: the merger
        # and the tracking layer
        self.tracking_colortable = colortables.create_random_16bit()
        self.tracking_colortable[0] = QColor(0,0,0,0).rgba() # make 0 transparent
        self.tracking_colortable[1] = QColor(128,128,128,255).rgba() # misdetections have id 1 and will be indicated by grey

        self.merger_colortable = colortables.create_default_16bit()
        for i in range(7):
            self.merger_colortable[i] = self.mergerColors[i].rgba()

        if "MergerOutput" in self.topLevelOperatorView.outputs:
            parameters = self.mainOperator.Parameters.value

            if 'withMergerResolution' in parameters.keys() and not parameters['withMergerResolution']:
                merger_ct = self.merger_colortable
            else:
                merger_ct = self.tracking_colortable
                
            # Using same color table for tracking with and without mergers (Is there any reason for using different color tables?)
            merger_ct = self.tracking_colortable

            if self.topLevelOperatorView.MergerCachedOutput.ready():
                self.mergersrc = LazyflowSource( self.topLevelOperatorView.MergerCachedOutput )
            else:
                self.mergersrc = LazyflowSource( self.topLevelOperatorView.zeroProvider.Output )

            mergerLayer = ColortableLayer( self.mergersrc, merger_ct )
            mergerLayer.name = "Merger"

            if 'withMergerResolution' in parameters.keys() and not parameters['withMergerResolution']:
                mergerLayer.visible = True
            else:
                mergerLayer.visible = False

            layers.append(mergerLayer)

        if self.topLevelOperatorView.CachedOutput.ready():
            self.trackingsrc = LazyflowSource( self.topLevelOperatorView.CachedOutput )
            trackingLayer = ColortableLayer( self.trackingsrc, self.tracking_colortable )
            trackingLayer.name = "Tracking"
            trackingLayer.visible = True
            trackingLayer.opacity = 1.0
            layers.append(trackingLayer)

        elif self.topLevelOperatorView.zeroProvider.Output.ready():
            # provide zeros while waiting for the tracking result
            self.trackingsrc = LazyflowSource( self.topLevelOperatorView.zeroProvider.Output )
            trackingLayer = ColortableLayer( self.trackingsrc, self.tracking_colortable )
            trackingLayer.name = "Tracking"
            trackingLayer.visible = True
            trackingLayer.opacity = 1.0
            layers.append(trackingLayer)

        if "RelabeledImage" in self.topLevelOperatorView.outputs:
            if self.topLevelOperatorView.RelabeledCachedOutput.ready():
                self.objectssrc = LazyflowSource( self.topLevelOperatorView.RelabeledCachedOutput )
            else:
                self.objectssrc = LazyflowSource( self.topLevelOperatorView.zeroProvider.Output )
        else:
            if self.topLevelOperatorView.LabelImage.ready():
                self.objectssrc = LazyflowSource( self.topLevelOperatorView.LabelImage )
        ct = colortables.create_random_16bit()
        ct[0] = QColor(0,0,0,0).rgba() # make 0 transparent
        objLayer = ColortableLayer( self.objectssrc, ct )
        objLayer.name = "Objects"
        objLayer.opacity = 1.0
        objLayer.visible = False
        layers.append(objLayer)

        if self.mainOperator.RawImage.ready():
            rawLayer = self.createStandardLayerFromSlot(self.mainOperator.RawImage)
            rawLayer.name = "Raw"
            layers.insert( len(layers), rawLayer )


        if self.topLevelOperatorView.LabelImage.meta.shape:
            maxt = self.topLevelOperatorView.LabelImage.meta.shape[0] - 1
            maxx = self.topLevelOperatorView.LabelImage.meta.shape[1] - 1
            maxy = self.topLevelOperatorView.LabelImage.meta.shape[2] - 1
            maxz = self.topLevelOperatorView.LabelImage.meta.shape[3] - 1

            if not self.mainOperator.Parameters.ready():
                raise Exception("Parameter slot is not ready")

            parameters = self.mainOperator.Parameters.value
            self._setRanges()
            if 'size_range' in parameters:
                self._drawer.to_size.setValue(parameters['size_range'][1]-1)
                self._drawer.from_size.setValue(parameters['size_range'][0])
            else:
                self._drawer.from_size.setValue(0)
                self._drawer.to_size.setValue(10000)

            if 'x_range' in parameters:
                self._drawer.to_x.setValue(parameters['x_range'][1]-1)
                self._drawer.from_x.setValue(parameters['x_range'][0])
            else:
#.........这里部分代码省略.........
开发者ID:JaimeIvanCervantes,项目名称:ilastik,代码行数:103,代码来源:trackingBaseGui.py

示例12: setupLayers

# 需要导入模块: from volumina.api import ColortableLayer [as 别名]
# 或者: from volumina.api.ColortableLayer import opacity [as 别名]
    def setupLayers( self ):        
        layers = []
        
        if "MergerOutput" in self.topLevelOperatorView.outputs:
            ct = colortables.create_default_8bit()
            for i in range(7):
                ct[i] = self.mergerColors[i].rgba()

            if self.topLevelOperatorView.MergerCachedOutput.ready():
                self.mergersrc = LazyflowSource( self.topLevelOperatorView.MergerCachedOutput )
            else:
                self.mergersrc = LazyflowSource( self.topLevelOperatorView.ZeroOutput )

            mergerLayer = ColortableLayer( self.mergersrc, ct )
            mergerLayer.name = "Merger"
            mergerLayer.visible = True
            layers.append(mergerLayer)
            
        ct = colortables.create_random_16bit()
        ct[0] = QColor(0,0,0,0).rgba() # make 0 transparent
        ct[1] = QColor(128,128,128,255).rgba() # misdetections have id 1 and will be indicated by grey
        
        if self.topLevelOperatorView.CachedOutput.ready():            
            self.trackingsrc = LazyflowSource( self.topLevelOperatorView.CachedOutput )
            trackingLayer = ColortableLayer( self.trackingsrc, ct )
            trackingLayer.name = "Tracking"
            trackingLayer.visible = True
            trackingLayer.opacity = 1.0
            layers.append(trackingLayer)
        elif self.topLevelOperatorView.zeroProvider.Output.ready(): 
            # provide zeros while waiting for the tracking result
            self.trackingsrc = LazyflowSource( self.topLevelOperatorView.zeroProvider.Output )
            trackingLayer = ColortableLayer( self.trackingsrc, ct )
            trackingLayer.name = "Tracking"
            trackingLayer.visible = True
            trackingLayer.opacity = 1.0
            layers.append(trackingLayer)
        
        if self.topLevelOperatorView.LabelImage.ready():
            self.objectssrc = LazyflowSource( self.topLevelOperatorView.LabelImage )    
            ct = colortables.create_random_16bit()
            ct[0] = QColor(0,0,0,0).rgba() # make 0 transparent
            objLayer = ColortableLayer( self.objectssrc, ct )
            objLayer.name = "Objects"
            objLayer.opacity = 1.0
            objLayer.visible = True
            layers.append(objLayer)


        if self.mainOperator.RawImage.ready():
            rawLayer = self.createStandardLayerFromSlot(self.mainOperator.RawImage)
            rawLayer.name = "Raw"        
            layers.insert( len(layers), rawLayer )   
        
        
        if self.topLevelOperatorView.LabelImage.meta.shape:
            self.editor.dataShape = self.topLevelOperatorView.LabelImage.meta.shape

            maxt = self.topLevelOperatorView.LabelImage.meta.shape[0] - 1
            maxx = self.topLevelOperatorView.LabelImage.meta.shape[1] - 1            
            maxy = self.topLevelOperatorView.LabelImage.meta.shape[2] - 1
            maxz = self.topLevelOperatorView.LabelImage.meta.shape[3] - 1
                    
            if not self.mainOperator.Parameters.ready():
                raise Exception("Parameter slot is not ready")
            
            parameters = self.mainOperator.Parameters.value
            self._setRanges() 
            if 'size_range' in parameters:                
                self._drawer.to_size.setValue(parameters['size_range'][1]-1)
                self._drawer.from_size.setValue(parameters['size_range'][0])
            else:
                self._drawer.from_size.setValue(0)
                self._drawer.to_size.setValue(10000)
                
            if 'x_range' in parameters:                
                self._drawer.to_x.setValue(parameters['x_range'][1]-1)
                self._drawer.from_x.setValue(parameters['x_range'][0])
            else:
                self._drawer.from_x.setValue(0)
                self._drawer.to_x.setValue(maxx)
                
            if 'y_range' in parameters:
                self._drawer.to_y.setValue(parameters['y_range'][1]-1)
                self._drawer.from_y.setValue(parameters['y_range'][0])                
            else:
                self._drawer.from_y.setValue(0)
                self._drawer.to_y.setValue(maxy)
                
            if 'z_range' in parameters:
                self._drawer.to_z.setValue(parameters['z_range'][1]-1)
                self._drawer.from_z.setValue(parameters['z_range'][0])                
            else:
                self._drawer.from_z.setValue(0)
                self._drawer.to_z.setValue(maxz)
            
            if 'time_range' in parameters:
                self._drawer.to_time.setValue(parameters['time_range'][1])
                self._drawer.from_time.setValue(parameters['time_range'][0])                
            else:
#.........这里部分代码省略.........
开发者ID:ilastikdev,项目名称:ilastik,代码行数:103,代码来源:trackingBaseGui.py

示例13: setupLayers

# 需要导入模块: from volumina.api import ColortableLayer [as 别名]
# 或者: from volumina.api.ColortableLayer import opacity [as 别名]
    def setupLayers(self):
        layers = []        
        op = self.topLevelOperatorView
        binct = [QColor(Qt.black), QColor(Qt.white)]
        binct[0] = 0
        ct = self._createDefault16ColorColorTable()
        ct[0]=0
        # Show the cached output, since it goes through a blocked cache
        
        if op.CachedOutput.ready():
            outputSrc = LazyflowSource(op.CachedOutput)
            outputLayer = ColortableLayer(outputSrc, binct)
            outputLayer.name = "Final output"
            outputLayer.visible = False
            outputLayer.opacity = 1.0
            outputLayer.setToolTip("Results of thresholding and size filter")
            layers.append(outputLayer)

        if self._showDebug:
            #FIXME: We have to do that, because lazyflow doesn't have a way to make an operator partially ready
            curIndex = self._drawer.tabWidget.currentIndex()
            if curIndex==1:
                if op.BigRegions.ready():
                    lowThresholdSrc = LazyflowSource(op.BigRegions)
                    lowThresholdLayer = ColortableLayer(lowThresholdSrc, binct)
                    lowThresholdLayer.name = "After low threshold"
                    lowThresholdLayer.visible = False
                    lowThresholdLayer.opacity = 1.0
                    lowThresholdLayer.setToolTip("Results of thresholding with the low pixel value threshold")
                    layers.append(lowThresholdLayer)
        
                if op.FilteredSmallLabels.ready():
                    filteredSmallLabelsLayer = self.createStandardLayerFromSlot( op.FilteredSmallLabels )
                    filteredSmallLabelsLayer.name = "After high threshold and size filter"
                    filteredSmallLabelsLayer.visible = False
                    filteredSmallLabelsLayer.opacity = 1.0
                    filteredSmallLabelsLayer.setToolTip("Results of thresholding with the high pixel value threshold,\
                                                         followed by the size filter")
                    layers.append(filteredSmallLabelsLayer)
        
                if op.SmallRegions.ready():
                    highThresholdSrc = LazyflowSource(op.SmallRegions)
                    highThresholdLayer = ColortableLayer(highThresholdSrc, binct)
                    highThresholdLayer.name = "After high threshold"
                    highThresholdLayer.visible = False
                    highThresholdLayer.opacity = 1.0
                    highThresholdLayer.setToolTip("Results of thresholding with the high pixel value threshold")
                    layers.append(highThresholdLayer)
            elif curIndex==0:
                if op.BeforeSizeFilter.ready():
                    thSrc = LazyflowSource(op.BeforeSizeFilter)
                    thLayer = ColortableLayer(thSrc, ct)
                    thLayer.name = "Before size filter"
                    thLayer.visible = False
                    thLayer.opacity = 1.0
                    thLayer.setToolTip("Results of thresholding before the size filter is applied")
                    layers.append(thLayer)
            
            # Selected input channel, smoothed.
            if op.Smoothed.ready():
                smoothedLayer = self.createStandardLayerFromSlot( op.Smoothed )
                smoothedLayer.name = "Smoothed input"
                smoothedLayer.visible = True
                smoothedLayer.opacity = 1.0
                smoothedLayer.setToolTip("Selected channel data, smoothed with a Gaussian with user-defined sigma")
                layers.append(smoothedLayer)
        
        # Show the selected channel
        if op.InputChannel.ready():
            drange = op.InputChannel.meta.drange
            if drange is None:
                drange = (0.0, 1.0)
            channelSrc = LazyflowSource(op.InputChannel)
            
            #channelLayer = AlphaModulatedLayer( channelSrc,
            #                                    tintColor=QColor(self._channelColors[op.Channel.value]),
            #                                    range=drange,
            #                                    normalize=drange )
            #it used to be set to the label color, but people found it confusing
            channelLayer = AlphaModulatedLayer( channelSrc, tintColor = QColor(Qt.white), range = drange, normalize=drange)
            channelLayer.name = "Selected input channel"
            channelLayer.opacity = 1.0
            channelLayer.setToolTip("The selected channel of the prediction images")
            #channelLayer.visible = channelIndex == op.Channel.value # By default, only the selected input channel is visible.    
            layers.append(channelLayer)
        
        # Show the raw input data
        rawSlot = self.topLevelOperatorView.RawInput
        if rawSlot.ready():
            rawLayer = self.createStandardLayerFromSlot( rawSlot )
            rawLayer.name = "Raw data"
            rawLayer.visible = True
            rawLayer.opacity = 1.0
            layers.append(rawLayer)

        return layers
开发者ID:christophdecker,项目名称:ilastik,代码行数:98,代码来源:thresholdTwoLevelsGui.py

示例14: setupLayers

# 需要导入模块: from volumina.api import ColortableLayer [as 别名]
# 或者: from volumina.api.ColortableLayer import opacity [as 别名]
    def setupLayers(self):
        layers = []
        op = self.topLevelOperatorView
        binct = [QColor(Qt.black), QColor(Qt.white)]
        binct[0] = 0
        ct = create_default_16bit()
        ct[0] = 0
        # Show the cached output, since it goes through a blocked cache

        if op.CachedOutput.ready():
            outputSrc = LazyflowSource(op.CachedOutput)
            outputLayer = ColortableLayer(outputSrc, ct)
            outputLayer.name = "Final output"
            outputLayer.visible = False
            outputLayer.opacity = 1.0
            outputLayer.setToolTip("Results of thresholding and size filter")
            layers.append(outputLayer)

        if op.InputChannelColors.ready():
            input_channel_colors = [QColor(r_g_b1[0],r_g_b1[1],r_g_b1[2]) for r_g_b1 in op.InputChannelColors.value]
        else:
            input_channel_colors = list(map(QColor, self._defaultInputChannelColors))
        for channel, channelProvider in enumerate(self._channelProviders):
            slot_drange = channelProvider.Output.meta.drange
            if slot_drange is not None:
                drange = slot_drange
            else:
                drange = (0.0, 1.0)
            channelSrc = LazyflowSource(channelProvider.Output)
            inputChannelLayer = AlphaModulatedLayer(
                channelSrc, tintColor=input_channel_colors[channel],
                range=drange, normalize=drange)
            inputChannelLayer.opacity = 0.5
            inputChannelLayer.visible = True
            inputChannelLayer.name = "Input Channel " + str(channel)
            inputChannelLayer.setToolTip("Select input channel " + str(channel) + \
                                            " if this prediction image contains the objects of interest.")                    
            layers.append(inputChannelLayer)

        if self._showDebug:
            #FIXME: We have to do that, because lazyflow doesn't have a way to make an operator partially ready
            curIndex = op.CurOperator.value
            if curIndex==1:
                if op.BigRegions.ready():
                    lowThresholdSrc = LazyflowSource(op.BigRegions)
                    lowThresholdLayer = ColortableLayer(lowThresholdSrc, binct)
                    lowThresholdLayer.name = "After low threshold"
                    lowThresholdLayer.visible = False
                    lowThresholdLayer.opacity = 1.0
                    lowThresholdLayer.setToolTip("Results of thresholding with the low pixel value threshold")
                    layers.append(lowThresholdLayer)
        
                if op.FilteredSmallLabels.ready():
                    filteredSmallLabelsSrc = LazyflowSource(op.FilteredSmallLabels)
                    #filteredSmallLabelsLayer = self.createStandardLayerFromSlot( op.FilteredSmallLabels )
                    filteredSmallLabelsLayer = ColortableLayer(filteredSmallLabelsSrc, binct)
                    filteredSmallLabelsLayer.name = "After high threshold and size filter"
                    filteredSmallLabelsLayer.visible = False
                    filteredSmallLabelsLayer.opacity = 1.0
                    filteredSmallLabelsLayer.setToolTip("Results of thresholding with the high pixel value threshold,\
                                                         followed by the size filter")
                    layers.append(filteredSmallLabelsLayer)
        
                if op.SmallRegions.ready():
                    highThresholdSrc = LazyflowSource(op.SmallRegions)
                    highThresholdLayer = ColortableLayer(highThresholdSrc, binct)
                    highThresholdLayer.name = "After high threshold"
                    highThresholdLayer.visible = False
                    highThresholdLayer.opacity = 1.0
                    highThresholdLayer.setToolTip("Results of thresholding with the high pixel value threshold")
                    layers.append(highThresholdLayer)
            elif curIndex==0:
                if op.BeforeSizeFilter.ready():
                    thSrc = LazyflowSource(op.BeforeSizeFilter)
                    thLayer = ColortableLayer(thSrc, ct)
                    thLayer.name = "Before size filter"
                    thLayer.visible = False
                    thLayer.opacity = 1.0
                    thLayer.setToolTip("Results of thresholding before the size filter is applied")
                    layers.append(thLayer)
            
            # Selected input channel, smoothed.
            if op.Smoothed.ready():
                smoothedLayer = self.createStandardLayerFromSlot( op.Smoothed )
                smoothedLayer.name = "Smoothed input"
                smoothedLayer.visible = True
                smoothedLayer.opacity = 1.0
                smoothedLayer.setToolTip("Selected channel data, smoothed with a Gaussian with user-defined sigma")
                layers.append(smoothedLayer)
                
        
        # Show the raw input data
        rawSlot = self.topLevelOperatorView.RawInput
        if rawSlot.ready():
            rawLayer = self.createStandardLayerFromSlot( rawSlot )
            rawLayer.name = "Raw data"
            rawLayer.visible = True
            rawLayer.opacity = 1.0
            layers.append(rawLayer)

#.........这里部分代码省略.........
开发者ID:DerThorsten,项目名称:ilastik,代码行数:103,代码来源:thresholdTwoLevelsGui.py

示例15: setupLayers

# 需要导入模块: from volumina.api import ColortableLayer [as 别名]
# 或者: from volumina.api.ColortableLayer import opacity [as 别名]
    def setupLayers(self):

        # Base class provides the label layer.
        layers = super(ObjectClassificationGui, self).setupLayers()

        labelOutput = self._labelingSlots.labelOutput
        binarySlot = self.op.BinaryImages
        segmentedSlot = self.op.SegmentationImages
        rawSlot = self.op.RawImages

        if segmentedSlot.ready():
            ct = colortables.create_default_16bit()
            self.objectssrc = LazyflowSource(segmentedSlot)
            ct[0] = QColor(0, 0, 0, 0).rgba()  # make 0 transparent
            layer = ColortableLayer(self.objectssrc, ct)
            layer.name = "Objects"
            layer.opacity = 0.5
            layer.visible = True
            layers.append(layer)

        if binarySlot.ready():
            ct_binary = [QColor(0, 0, 0, 0).rgba(), QColor(255, 255, 255, 255).rgba()]
            self.binaryimagesrc = LazyflowSource(binarySlot)
            layer = ColortableLayer(self.binaryimagesrc, ct_binary)
            layer.name = "Binary Image"
            layer.visible = False
            layers.append(layer)

        # This is just for colors
        labels = self.labelListData
        for channel, probSlot in enumerate(self.op.PredictionProbabilityChannels):
            if probSlot.ready() and channel < len(labels):
                ref_label = labels[channel]
                probsrc = LazyflowSource(probSlot)
                probLayer = AlphaModulatedLayer(
                    probsrc, tintColor=ref_label.pmapColor(), range=(0.0, 1.0), normalize=(0.0, 1.0)
                )
                probLayer.opacity = 0.25
                probLayer.visible = self.labelingDrawerUi.checkInteractive.isChecked()

                def setLayerColor(c, predictLayer=probLayer):
                    predictLayer.tintColor = c

                def setLayerName(n, predictLayer=probLayer):
                    newName = "Prediction for %s" % n
                    predictLayer.name = newName

                setLayerName(ref_label.name)
                ref_label.pmapColorChanged.connect(setLayerColor)
                ref_label.nameChanged.connect(setLayerName)
                layers.insert(0, probLayer)

        predictionSlot = self.op.PredictionImages
        if predictionSlot.ready():
            self.predictsrc = LazyflowSource(predictionSlot)
            self.predictlayer = ColortableLayer(self.predictsrc, colorTable=self._colorTable16)
            self.predictlayer.name = "Prediction"
            self.predictlayer.ref_object = None
            self.predictlayer.visible = self.labelingDrawerUi.checkInteractive.isChecked()

            # put first, so that it is visible after hitting "live
            # predict".
            layers.insert(0, self.predictlayer)

        badObjectsSlot = self.op.BadObjectImages
        if badObjectsSlot.ready():
            ct_black = [0, QColor(Qt.black).rgba()]
            self.badSrc = LazyflowSource(badObjectsSlot)
            self.badLayer = ColortableLayer(self.badSrc, colorTable=ct_black)
            self.badLayer.name = "Ambiguous objects"
            self.badLayer.visible = False
            layers.append(self.badLayer)

        if rawSlot.ready():
            self.rawimagesrc = LazyflowSource(rawSlot)
            layer = self.createStandardLayerFromSlot(rawSlot)
            layer.name = "Raw data"
            layers.append(layer)

        # since we start with existing labels, it makes sense to start
        # with the first one selected. This would make more sense in
        # __init__(), but it does not take effect there.
        # self.selectLabel(0)

        return layers
开发者ID:hanslovsky,项目名称:ilastik,代码行数:87,代码来源:objectClassificationGui.py


注:本文中的volumina.api.ColortableLayer.opacity方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。