当前位置: 首页>>代码示例>>Python>>正文


Python TPOTClassifier.predict方法代码示例

本文整理汇总了Python中tpot.TPOTClassifier.predict方法的典型用法代码示例。如果您正苦于以下问题:Python TPOTClassifier.predict方法的具体用法?Python TPOTClassifier.predict怎么用?Python TPOTClassifier.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tpot.TPOTClassifier的用法示例。


在下文中一共展示了TPOTClassifier.predict方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_predict

# 需要导入模块: from tpot import TPOTClassifier [as 别名]
# 或者: from tpot.TPOTClassifier import predict [as 别名]
def test_predict():
    """Assert that the TPOT predict function raises a ValueError when no optimized pipeline exists"""

    tpot_obj = TPOTClassifier()

    try:
        tpot_obj.predict(testing_features)
        assert False  # Should be unreachable
    except ValueError:
        pass
开发者ID:rhiever,项目名称:tpot,代码行数:12,代码来源:tests.py

示例2: test_predict_2

# 需要导入模块: from tpot import TPOTClassifier [as 别名]
# 或者: from tpot.TPOTClassifier import predict [as 别名]
def test_predict_2():
    """Assert that the TPOT predict function returns a numpy matrix of shape (num_testing_rows,)"""

    tpot_obj = TPOTClassifier()
    tpot_obj._optimized_pipeline = creator.Individual.\
        from_string('DecisionTreeClassifier(input_matrix)', tpot_obj._pset)
    tpot_obj._fitted_pipeline = tpot_obj._toolbox.compile(expr=tpot_obj._optimized_pipeline)
    tpot_obj._fitted_pipeline.fit(training_features, training_classes)

    result = tpot_obj.predict(testing_features)

    assert result.shape == (testing_features.shape[0],)
开发者ID:rhiever,项目名称:tpot,代码行数:14,代码来源:tests.py

示例3: test_predict_2

# 需要导入模块: from tpot import TPOTClassifier [as 别名]
# 或者: from tpot.TPOTClassifier import predict [as 别名]
def test_predict_2():
    """Assert that the TPOT predict function returns a numpy matrix of shape (num_testing_rows,)"""

    tpot_obj = TPOTClassifier()
    pipeline_string= ('DecisionTreeClassifier(input_matrix, DecisionTreeClassifier__criterion=gini'
    ', DecisionTreeClassifier__max_depth=8,DecisionTreeClassifier__min_samples_leaf=5,'
    'DecisionTreeClassifier__min_samples_split=5)')
    tpot_obj._optimized_pipeline = creator.Individual.from_string(pipeline_string, tpot_obj._pset)
    tpot_obj._fitted_pipeline = tpot_obj._toolbox.compile(expr=tpot_obj._optimized_pipeline)
    tpot_obj._fitted_pipeline.fit(training_features, training_classes)

    result = tpot_obj.predict(testing_features)

    assert result.shape == (testing_features.shape[0],)
开发者ID:teaearlgraycold,项目名称:tpot,代码行数:16,代码来源:tests.py

示例4: main

# 需要导入模块: from tpot import TPOTClassifier [as 别名]
# 或者: from tpot.TPOTClassifier import predict [as 别名]
def main():

  # set up the path to the data sets and the data were are going to experiment 
  # with 
  base_path = '/scratch/ditzler/Git/ClassificationDatasets/csv/'
  data_setz = [#'bank',
    'blood',
    'breast-cancer-wisc-diag',
    'breast-cancer-wisc-prog',
    'breast-cancer-wisc',
    'breast-cancer',
    'congressional-voting',
    'conn-bench-sonar-mines-rocks',
    'credit-approval',
    'cylinder-bands',
    'echocardiogram',
    #'fertility',
    'haberman-survival',
    'heart-hungarian',
    'hepatitis',
    'ionosphere',
    'mammographic',
    'molec-biol-promoter',
    'musk-1',
    'oocytes_merluccius_nucleus_4d',
    'oocytes_trisopterus_nucleus_2f',
    'ozone',
    'parkinsons',
    'pima',
    #'pittsburg-bridges-T-OR-D';
    'planning',
    'ringnorm',
    #'spambase',
    'spectf_train',
    'statlog-australian-credit',
    'statlog-german-credit',
    'statlog-heart',
    'titanic',
    #'twonorm',
    'vertebral-column-2clases']

  # nsplits is like the number of cv (its bootstraps here) then set up some variales
  # to save the results to. 
  n_splitz = 10
  errors = np.zeros((len(data_setz),))
  fms = np.zeros((len(data_setz),))
  times = np.zeros((len(data_setz),))
  m = 0

  for n in range(n_splitz):
    print 'Spilt ' + str(n) + ' of ' + str(n_splitz)
    for i in range(len(data_setz)):
      print '    ' + data_setz[i]
      df = pd.read_csv(base_path + data_setz[i] + '.csv', sep=',')
      data = df.as_matrix()
      X = data[:, :-1]
      y = data[:, -1]
      X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.75, test_size=0.25, random_state=m)
      m += 1
      
      ts = time.time()
      tpot = TPOTClassifier(generations=10, population_size=25, verbosity=1)
      tpot.fit(X_train, y_train)
      times[i] += (time.time() - ts)

      errors[i] += (1-tpot.score(X_test, y_test))
      yhat = tpot.predict(X_test)
      fms[i] += f1_score(y_test, yhat, average='macro')
  
  errors /= n_splitz
  fms /= n_splitz
  times /= n_splitz

  df = pd.DataFrame({'errors': errors, 'fms': fms, 'times': times})
  df.to_csv(path_or_buf='tpot-results2.csv', sep=',')

  return None 
开发者ID:gditzler,项目名称:atsd-experiments,代码行数:79,代码来源:tpots-experiment.py


注:本文中的tpot.TPOTClassifier.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。