当前位置: 首页>>代码示例>>Python>>正文


Python LoadMatrix.load_labels方法代码示例

本文整理汇总了Python中tools.load.LoadMatrix.load_labels方法的典型用法代码示例。如果您正苦于以下问题:Python LoadMatrix.load_labels方法的具体用法?Python LoadMatrix.load_labels怎么用?Python LoadMatrix.load_labels使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tools.load.LoadMatrix的用法示例。


在下文中一共展示了LoadMatrix.load_labels方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: prepare_data

# 需要导入模块: from tools.load import LoadMatrix [as 别名]
# 或者: from tools.load.LoadMatrix import load_labels [as 别名]
def prepare_data(use_toy=True):
    from os.path import exists
    from tools.load import LoadMatrix
    lm=LoadMatrix()

    if not use_toy and exists('../data/../mldata/uci-20070111-optdigits.mat'):
        from scipy.io import loadmat

        mat = loadmat('../data/../mldata/uci-20070111-optdigits.mat')['int0'].astype(float)
        X = mat[:-1,:]
        Y = mat[-1,:]
        isplit = X.shape[1]/2
        traindat = X[:,:isplit]
        label_traindat = Y[:isplit]
        testdat = X[:, isplit:]
        label_testdat = Y[isplit:]
    else:
        traindat = lm.load_numbers('../data/fm_train_real.dat')
        testdat  = lm.load_numbers('../data/fm_test_real.dat')
        label_traindat = lm.load_labels('../data/label_train_multiclass.dat')
        label_testdat = None

    return [traindat, label_traindat, testdat, label_testdat]
开发者ID:42MachineLearning,项目名称:shogun,代码行数:25,代码来源:multiclass_shared.py

示例2: Descent

# 需要导入模块: from tools.load import LoadMatrix [as 别名]
# 或者: from tools.load.LoadMatrix import load_labels [as 别名]
# In this example a two-class linear support vector machine classifier is trained
# on a toy data set and the trained classifier is used to predict labels of test
# examples. As training algorithm the Stochastic Gradient Descent (SGD) solver is
# used with the SVM regularization parameter C=0.9. The number of iterations, i.e.
# passes though all training examples, is set to num_iter=5 .
# 
# For more details on the SGD solver see
#  L. Bottou, O. Bousquet. The tradeoff of large scale learning. In NIPS 20. MIT
#  Press. 2008.

from tools.load import LoadMatrix
lm=LoadMatrix()

traindat = lm.load_numbers('../data/fm_train_real.dat')
testdat = lm.load_numbers('../data/fm_test_real.dat')
label_traindat = lm.load_labels('../data/label_train_twoclass.dat')

parameter_list = [[traindat,testdat,label_traindat,0.9,1,6],[traindat,testdat,label_traindat,0.8,1,5]]

def classifier_svmsgd_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_twoclass=label_traindat,C=0.9,num_threads=1,num_iter=5):

	from shogun.Features import RealFeatures, SparseRealFeatures, Labels
	from shogun.Classifier import SVMSGD

	realfeat=RealFeatures(fm_train_real)
	feats_train=SparseRealFeatures()
	feats_train.obtain_from_simple(realfeat)
	realfeat=RealFeatures(fm_test_real)
	feats_test=SparseRealFeatures()
	feats_test.obtain_from_simple(realfeat)
开发者ID:Anshul-Bansal,项目名称:gsoc,代码行数:32,代码来源:classifier_svmsgd_modular.py

示例3: classifier_svmlight_modular

# 需要导入模块: from tools.load import LoadMatrix [as 别名]
# 或者: from tools.load.LoadMatrix import load_labels [as 别名]
# the precision parameter epsilon=1e-5.
# 
# For more details on the SVM^light see
#  T. Joachims. Making large-scale SVM learning practical. In Advances in Kernel
#  Methods -- Support Vector Learning, pages 169-184. MIT Press, Cambridge, MA USA, 1999.
# 
# For more details on the Weighted Degree kernel see
#  G. Raetsch, S.Sonnenburg, and B. Schoelkopf. RASE: recognition of alternatively
#  spliced exons in C. elegans. Bioinformatics, 21:369-377, June 2005. 

from tools.load import LoadMatrix
lm=LoadMatrix()

traindat = lm.load_dna('../data/fm_train_dna.dat')
testdat = lm.load_dna('../data/fm_test_dna.dat')
label_traindat = lm.load_labels('../data/label_train_dna.dat')

parameter_list = [[traindat,testdat,label_traindat,1.1,1e-5,1],[traindat,testdat,label_traindat,1.2,1e-5,1]]

def classifier_svmlight_modular (fm_train_dna=traindat,fm_test_dna=testdat,label_train_dna=label_traindat,C=1.2,epsilon=1e-5,num_threads=1):
	from shogun.Features import StringCharFeatures, Labels, DNA
	from shogun.Kernel import WeightedDegreeStringKernel
	try:
		from shogun.Classifier import SVMLight
	except ImportError:
		print 'No support for SVMLight available.'
		return

	feats_train=StringCharFeatures(DNA)
	feats_train.set_features(fm_train_dna)
	feats_test=StringCharFeatures(DNA)
开发者ID:Anshul-Bansal,项目名称:gsoc,代码行数:33,代码来源:classifier_svmlight_modular.py

示例4: classifier_larank_modular

# 需要导入模块: from tools.load import LoadMatrix [as 别名]
# 或者: from tools.load.LoadMatrix import load_labels [as 别名]
from tools.load import LoadMatrix
lm=LoadMatrix()

traindat = lm.load_numbers('../data/fm_train_real.dat')
testdat = lm.load_numbers('../data/fm_test_real.dat')
label_traindat = lm.load_labels('../data/label_train_multiclass.dat')

parameter_list = [[traindat,testdat,label_traindat,0.9,1,2000],[traindat,testdat,label_traindat,3,1,5000]]

def classifier_larank_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,C=0.9,num_threads=1,num_iter=5):
	from shogun.Features import RealFeatures, Labels
	from shogun.Kernel import GaussianKernel
	from shogun.Classifier import LaRank
	from shogun.Mathematics import Math_init_random
	Math_init_random(17)

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	width=2.1
	kernel=GaussianKernel(feats_train, feats_train, width)

	epsilon=1e-5
	labels=Labels(label_train_multiclass)

	svm=LaRank(C, kernel, labels)
	#svm.set_tau(1e-3)
	svm.set_batch_mode(False)
	#svm.io.enable_progress()
	svm.set_epsilon(epsilon)
	svm.train()
	out=svm.apply(feats_train).get_labels()
开发者ID:serialhex,项目名称:shogun,代码行数:33,代码来源:classifier_larank_modular.py

示例5: distance_hammingword_modular

# 需要导入模块: from tools.load import LoadMatrix [as 别名]
# 或者: from tools.load.LoadMatrix import load_labels [as 别名]
# This example shows how to compute the Hamming Word Distance for string features.

from tools.load import LoadMatrix
lm=LoadMatrix()

traindna = lm.load_dna('../data/fm_train_dna.dat')
testdna = lm.load_dna('../data/fm_test_dna.dat')
testdat = lm.load_labels('../data/fm_test_real.dat')

parameter_list = [[traindna,testdna,testdat,4,0,False,False],
		[traindna,testdna,testdat,3,0,False,False]]

def distance_hammingword_modular (fm_train_dna=traindna,fm_test_dna=testdna,
		fm_test_real=testdat,order=3,gap=0,reverse=False,use_sign=False):

	from shogun.Features import StringCharFeatures, StringWordFeatures, DNA
	from shogun.Preprocessor import SortWordString
	from shogun.Distance import HammingWordDistance

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_train_dna)
	feats_train=StringWordFeatures(charfeat.get_alphabet())
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	preproc=SortWordString()
	preproc.init(feats_train)
	feats_train.add_preprocessor(preproc)
	feats_train.apply_preprocessor()

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_test_dna)
	feats_test=StringWordFeatures(charfeat.get_alphabet())
开发者ID:behollis,项目名称:muViewBranch,代码行数:33,代码来源:distance_hammingword_modular.py

示例6: evaluation_prcevaluation_modular

# 需要导入模块: from tools.load import LoadMatrix [as 别名]
# 或者: from tools.load.LoadMatrix import load_labels [as 别名]
from tools.load import LoadMatrix
from numpy import random
lm=LoadMatrix()

ground_truth = lm.load_labels('../data/label_train_twoclass.dat')
random.seed(17)
predicted = random.randn(len(ground_truth))

parameter_list = [[ground_truth,predicted]]

def evaluation_prcevaluation_modular(ground_truth, predicted):
	from shogun.Features import Labels
	from shogun.Evaluation import PRCEvaluation

	ground_truth_labels = Labels(ground_truth)
	predicted_labels = Labels(predicted)
	
	evaluator = PRCEvaluation()
	evaluator.evaluate(predicted_labels,ground_truth_labels)
	
	return evaluator.get_PRC(), evaluator.get_auPRC()


if __name__=='__main__':
	print 'PRCEvaluation'
	evaluation_prcevaluation_modular(*parameter_list[0])

开发者ID:ashish-sadh,项目名称:shogun,代码行数:28,代码来源:evaluation_prcevaluation_modular.py

示例7: svm_light

# 需要导入模块: from tools.load import LoadMatrix [as 别名]
# 或者: from tools.load.LoadMatrix import load_labels [as 别名]
#!/usr/bin/env python
"""
Explicit examples on how to use the different classifiers
"""

from numpy import double, array, floor, concatenate, sign, ones, zeros, char, int
from numpy.random import rand, seed, permutation
from sg import sg

from tools.load import LoadMatrix
lm=LoadMatrix()
fm_train_real=lm.load_numbers('../data/fm_train_real.dat')
fm_test_real=lm.load_numbers('../data/fm_test_real.dat')
fm_train_dna=lm.load_dna('../data/fm_train_dna.dat')
fm_test_dna=lm.load_dna('../data/fm_test_dna.dat')
label_train_dna=lm.load_labels('../data/label_train_dna.dat')
label_train_twoclass=lm.load_labels('../data/label_train_twoclass.dat')
label_train_multiclass=lm.load_labels('../data/label_train_multiclass.dat')

###########################################################################
# kernel-based SVMs
###########################################################################

def svm_light ():
	print 'SVMLight'

	size_cache=10
	degree=20
	C=0.017
	epsilon=1e-5
	use_bias=False
开发者ID:polyactis,项目名称:test,代码行数:33,代码来源:all_classifier.py

示例8: LoadMatrix

# 需要导入模块: from tools.load import LoadMatrix [as 别名]
# 或者: from tools.load.LoadMatrix import load_labels [as 别名]
#!/usr/bin/env python
from tools.load import LoadMatrix

lm = LoadMatrix()

train_dna = lm.load_dna("../data/fm_train_dna.dat")
test_dna = lm.load_dna("../data/fm_test_dna.dat")
label = lm.load_labels("../data/label_train_dna.dat")

parameter_list = [[train_dna, test_dna, label, 20, 0.9, 1e-3, 1], [train_dna, test_dna, label, 20, 2.3, 1e-5, 4]]


def classifier_svmlight_batch_linadd_modular(
    fm_train_dna, fm_test_dna, label_train_dna, degree, C, epsilon, num_threads
):

    from modshogun import StringCharFeatures, BinaryLabels, DNA
    from modshogun import WeightedDegreeStringKernel, MSG_DEBUG

    try:
        from modshogun import SVMLight
    except ImportError:
        print("No support for SVMLight available.")
        return

    feats_train = StringCharFeatures(DNA)
    # feats_train.io.set_loglevel(MSG_DEBUG)
    feats_train.set_features(fm_train_dna)
    feats_test = StringCharFeatures(DNA)
    feats_test.set_features(fm_test_dna)
    degree = 20
开发者ID:JingheZ,项目名称:shogun,代码行数:33,代码来源:classifier_svmlight_batch_linadd_modular.py

示例9: evaluation_multiclassaccuracy_modular

# 需要导入模块: from tools.load import LoadMatrix [as 别名]
# 或者: from tools.load.LoadMatrix import load_labels [as 别名]
#!/usr/bin/env python
from tools.load import LoadMatrix
from numpy import random
lm=LoadMatrix()

random.seed(17)
ground_truth = lm.load_labels('../data/label_train_multiclass.dat')
predicted = lm.load_labels('../data/label_train_multiclass.dat') * 2

parameter_list = [[ground_truth,predicted]]

def evaluation_multiclassaccuracy_modular (ground_truth, predicted):
	from shogun.Features import MulticlassLabels
	from shogun.Evaluation import MulticlassAccuracy

	ground_truth_labels = MulticlassLabels(ground_truth)
	predicted_labels = MulticlassLabels(predicted)
	
	evaluator = MulticlassAccuracy()
	accuracy = evaluator.evaluate(predicted_labels,ground_truth_labels)
	
	return accuracy


if __name__=='__main__':
	print('MulticlassAccuracy')
	evaluation_multiclassaccuracy_modular(*parameter_list[0])

开发者ID:AlexBinder,项目名称:shogun,代码行数:29,代码来源:evaluation_multiclassaccuracy_modular.py

示例10: PerformanceMeasures

# 需要导入模块: from tools.load import LoadMatrix [as 别名]
# 或者: from tools.load.LoadMatrix import load_labels [as 别名]
	epsilon=1e-5
	labels=Labels(label_train_twoclass)

	svm=LibSVM(C, kernel, labels)
	svm.set_epsilon(epsilon)
	svm.train()

	#kernel.init(feats_train, feats_test)
	output = svm.classify(feats_test)#.get_labels()
        #output_vector = output.get_labels()
        out=svm.classify().get_labels()
        testerr=mean(sign(out)!=testlab)
        print testerr


	#sv_idx=svm.get_support_vectors()
	#alphas=svm.get_alphas()
        #pm = PerformanceMeasures(output_vector, output)
        #acc = pm.get_accuracy()
        #roc = pm.get_auROC()
        #fms = pm.get_fmeasure()


if __name__=='__main__':
	from tools.load import LoadMatrix
	lm=LoadMatrix()
	fm_train_real=lm.load_numbers('/home/mati/lib/shogun-0.9.3/examples/documented/data/fm_train_real.dat')
	fm_test_real=lm.load_numbers('/home/mati/lib/shogun-0.9.3/examples/documented/data/fm_test_real.dat')
	label_train_twoclass=lm.load_labels('/home/mati/lib/shogun-0.9.3/examples/documented/data/label_train_twoclass.dat')
	libsvm()
开发者ID:BrainTech,项目名称:openbci,代码行数:32,代码来源:svm.py

示例11: RealFeatures

# 需要导入模块: from tools.load import LoadMatrix [as 别名]
# 或者: from tools.load.LoadMatrix import load_labels [as 别名]
    realfeat = RealFeatures(fm_train_real)
    feats_train = SparseRealFeatures()
    feats_train.obtain_from_simple(realfeat)
    realfeat = RealFeatures(fm_test_real)
    feats_test = SparseRealFeatures()
    feats_test.obtain_from_simple(realfeat)

    C = 0.9
    epsilon = 1e-5
    num_threads = 1
    labels = Labels(label_train_twoclass)

    svm = SVMOcas(C, feats_train, labels)
    svm.set_epsilon(epsilon)
    svm.parallel.set_num_threads(num_threads)
    svm.set_bias_enabled(False)
    svm.train()

    svm.set_features(feats_test)
    svm.classify().get_labels()


if __name__ == "__main__":
    from tools.load import LoadMatrix

    lm = LoadMatrix()
    fm_train_real = lm.load_numbers("../data/fm_train_real.dat")
    fm_test_real = lm.load_numbers("../data/fm_test_real.dat")
    label_train_twoclass = lm.load_labels("../data/label_train_twoclass.dat")
    svmocas()
开发者ID:polyactis,项目名称:test,代码行数:32,代码来源:classifier_svmocas_modular.py

示例12: regression_libsvr

# 需要导入模块: from tools.load import LoadMatrix [as 别名]
# 或者: from tools.load.LoadMatrix import load_labels [as 别名]
# In this example a support vector regression algorithm is trained on a
# real-valued toy data set. The underlying library used for the SVR training is
# LIBSVM. The SVR is trained with regularization parameter C=1 and a gaussian
# kernel with width=2.1.
# 
# For more details on LIBSVM solver see http://www.csie.ntu.edu.tw/~cjlin/libsvm/ .

from tools.load import LoadMatrix
from sg import sg
lm=LoadMatrix()

traindat=lm.load_numbers('../data/fm_train_real.dat')
testdat=lm.load_numbers('../data/fm_test_real.dat')
trainlabel=lm.load_labels('../data/label_train_regression.dat')
parameter_list=[[traindat,testdat,trainlabel,10,2.1,1.2,1e-5,1e-2],
		[traindat,testdat,trainlabel,11,2.3,1.3,1e-6,1e-3]]

def regression_libsvr (fm_train=traindat,fm_test=testdat,
		label_train=trainlabel,size_cache=10,width=2.1,
		C=1.2,epsilon=1e-5,tube_epsilon=1e-2):

	sg('set_features', 'TRAIN', fm_train)
	sg('set_kernel', 'GAUSSIAN', 'REAL', size_cache, width)

	sg('set_labels', 'TRAIN', label_train)
	sg('new_regression', 'LIBSVR')
	sg('svr_tube_epsilon', tube_epsilon)
	sg('c', C)
	sg('train_regression')

	sg('set_features', 'TEST', fm_test)
开发者ID:behollis,项目名称:muViewBranch,代码行数:33,代码来源:regression_libsvr.py

示例13: LoadMatrix

# 需要导入模块: from tools.load import LoadMatrix [as 别名]
# 或者: from tools.load.LoadMatrix import load_labels [as 别名]
from tools.load import LoadMatrix

lm = LoadMatrix()

traindna = lm.load_dna("../data/fm_train_dna.dat")
testdna = lm.load_dna("../data/fm_test_dna.dat")
testdat = lm.load_labels("../data/fm_test_real.dat")

parameter_list = [[traindna, testdna, testdat, 4, 0, False, False], [traindna, testdna, testdat, 3, 0, False, False]]


def distance_hammingword_modular(
    fm_train_dna=traindna, fm_test_dna=testdna, fm_test_real=testdat, order=3, gap=0, reverse=False, use_sign=False
):

    from shogun.Features import StringCharFeatures, StringWordFeatures, DNA
    from shogun.Preprocessor import SortWordString
    from shogun.Distance import HammingWordDistance

    charfeat = StringCharFeatures(DNA)
    charfeat.set_features(fm_train_dna)
    feats_train = StringWordFeatures(charfeat.get_alphabet())
    feats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    preproc = SortWordString()
    preproc.init(feats_train)
    feats_train.add_preproc(preproc)
    feats_train.apply_preproc()

    charfeat = StringCharFeatures(DNA)
    charfeat.set_features(fm_test_dna)
    feats_test = StringWordFeatures(charfeat.get_alphabet())
开发者ID:alesis,项目名称:shogun,代码行数:33,代码来源:distance_hammingword_modular.py

示例14: LoadMatrix

# 需要导入模块: from tools.load import LoadMatrix [as 别名]
# 或者: from tools.load.LoadMatrix import load_labels [as 别名]
from tools.load import LoadMatrix
from sg import sg

lm = LoadMatrix()


traindat = lm.load_numbers("../data/fm_train_real.dat")
testdat = lm.load_numbers("../data/fm_test_real.dat")
train_label = lm.load_labels("../data/label_train_multiclass.dat")
parameter_list = [[traindat, testdat, train_label, 3], [traindat, testdat, train_label, 4]]


def classifier_knn(fm_train_real=traindat, fm_test_real=testdat, label_train_multiclass=train_label, k=3):

    sg("set_features", "TRAIN", fm_train_real)
    sg("set_labels", "TRAIN", label_train_multiclass)
    sg("set_distance", "EUCLIDIAN", "REAL")
    sg("new_classifier", "KNN")
    sg("train_classifier", k)

    sg("set_features", "TEST", fm_test_real)
    result = sg("classify")
    return result


if __name__ == "__main__":
    print("KNN")
    classifier_knn(*parameter_list[0])
开发者ID:vinodrajendran001,项目名称:ASP,代码行数:30,代码来源:classifier_knn.py


注:本文中的tools.load.LoadMatrix.load_labels方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。