当前位置: 首页>>代码示例>>Python>>正文


Python load.LoadMatrix类代码示例

本文整理汇总了Python中tools.load.LoadMatrix的典型用法代码示例。如果您正苦于以下问题:Python LoadMatrix类的具体用法?Python LoadMatrix怎么用?Python LoadMatrix使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了LoadMatrix类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: prepare_data

def prepare_data(use_toy=True):
    from os.path import exists
    from tools.load import LoadMatrix
    lm=LoadMatrix()

    if not use_toy and exists('../data/../mldata/uci-20070111-optdigits.mat'):
        from scipy.io import loadmat

        mat = loadmat('../data/../mldata/uci-20070111-optdigits.mat')['int0'].astype(float)
        X = mat[:-1,:]
        Y = mat[-1,:]
        isplit = X.shape[1]/2
        traindat = X[:,:isplit]
        label_traindat = Y[:isplit]
        testdat = X[:, isplit:]
        label_testdat = Y[isplit:]
    else:
        traindat = lm.load_numbers('../data/fm_train_real.dat')
        testdat  = lm.load_numbers('../data/fm_test_real.dat')
        label_traindat = lm.load_labels('../data/label_train_multiclass.dat')
        label_testdat = None

    return [traindat, label_traindat, testdat, label_testdat]
开发者ID:42MachineLearning,项目名称:shogun,代码行数:23,代码来源:multiclass_shared.py

示例2: LoadMatrix

#!/usr/bin/env python
from tools.load import LoadMatrix

lm = LoadMatrix()
data = lm.load_cubes("../data/fm_train_cube.dat")

parameter_list = [[data, 1, 64, 1e-5, 2, 0, False, 5], [data, 3, 6, 1e-1, 1, 0, False, 2]]


def distribution_hmm_modular(fm_cube, N, M, pseudo, order, gap, reverse, num_examples):
    from shogun.Features import StringWordFeatures, StringCharFeatures, CUBE
    from shogun.Distribution import HMM, BW_NORMAL

    charfeat = StringCharFeatures(CUBE)
    charfeat.set_features(fm_cube)
    feats = StringWordFeatures(charfeat.get_alphabet())
    feats.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    hmm = HMM(feats, N, M, pseudo)
    hmm.train()
    hmm.baum_welch_viterbi_train(BW_NORMAL)

    num_examples = feats.get_num_vectors()
    num_param = hmm.get_num_model_parameters()
    for i in range(num_examples):
        for j in range(num_param):
            hmm.get_log_derivative(j, i)

    best_path = 0
    best_path_state = 0
    for i in range(num_examples):
开发者ID:joseph-chan,项目名称:rqpersonalsvn,代码行数:31,代码来源:distribution_hmm_modular.py

示例3: preproc_prunevarsubmean

from tools.load import LoadMatrix
from sg import sg
lm=LoadMatrix()

traindat=lm.load_numbers('../data/fm_train_real.dat')
testdat=lm.load_numbers('../data/fm_test_real.dat')
parameter_list=[[traindat,testdat,1.4,10,True],[traindat,testdat,1.5,11,True]]

def preproc_prunevarsubmean (fm_train_real=traindat,fm_test_real=testdat,
		 width=1.4,size_cache=10,divide_by_std=True):

	sg('add_preproc', 'PRUNEVARSUBMEAN', divide_by_std)
	sg('set_kernel', 'CHI2', 'REAL', size_cache, width)

	sg('set_features', 'TRAIN', fm_train_real)
	sg('attach_preproc', 'TRAIN')
	km=sg('get_kernel_matrix', 'TRAIN')

	sg('set_features', 'TEST', fm_test_real)
	sg('attach_preproc', 'TEST')
	km=sg('get_kernel_matrix', 'TEST')
	return km

if __name__=='__main__':
	print 'PruneVarSubMean'
	preproc_prunevarsubmean(*parameter_list[0])
开发者ID:AsherBond,项目名称:shogun,代码行数:26,代码来源:preproc_prunevarsubmean.py

示例4: LoadMatrix

from tools.load import LoadMatrix
import numpy

lm = LoadMatrix()
data = lm.load_numbers("../data/fm_train_real.dat")

parameter_list = [[data]]


def converter_multidimensionalscaling_modular(data):
    from shogun.Features import RealFeatures
    from shogun.Converter import MultidimensionalScaling
    from shogun.Distance import EuclidianDistance

    features = RealFeatures(data)

    distance_before = EuclidianDistance()
    distance_before.init(features, features)

    converter = MultidimensionalScaling()
    converter.set_target_dim(2)
    converter.set_landmark(False)
    embedding = converter.apply(features)

    distance_after = EuclidianDistance()
    distance_after.init(embedding, embedding)

    distance_matrix_after = distance_after.get_distance_matrix()
    distance_matrix_before = distance_before.get_distance_matrix()

    return numpy.linalg.norm(distance_matrix_after - distance_matrix_before) / numpy.linalg.norm(distance_matrix_before)
开发者ID:vinodrajendran001,项目名称:ASP,代码行数:31,代码来源:converter_multidimensionalscaling_modular.py

示例5: classifier_svmlight_modular

# In this example a two-class support vector machine classifier is trained on a
# DNA splice-site detection data set and the trained classifier is used to predict
# labels on test set. As training algorithm SVM^light is used with SVM
# regularization parameter C=1.2 and the Weighted Degree kernel of degree 20 and
# the precision parameter epsilon=1e-5.
# 
# For more details on the SVM^light see
#  T. Joachims. Making large-scale SVM learning practical. In Advances in Kernel
#  Methods -- Support Vector Learning, pages 169-184. MIT Press, Cambridge, MA USA, 1999.
# 
# For more details on the Weighted Degree kernel see
#  G. Raetsch, S.Sonnenburg, and B. Schoelkopf. RASE: recognition of alternatively
#  spliced exons in C. elegans. Bioinformatics, 21:369-377, June 2005. 

from tools.load import LoadMatrix
lm=LoadMatrix()

traindat = lm.load_dna('../data/fm_train_dna.dat')
testdat = lm.load_dna('../data/fm_test_dna.dat')
label_traindat = lm.load_labels('../data/label_train_dna.dat')

parameter_list = [[traindat,testdat,label_traindat,1.1,1e-5,1],[traindat,testdat,label_traindat,1.2,1e-5,1]]

def classifier_svmlight_modular (fm_train_dna=traindat,fm_test_dna=testdat,label_train_dna=label_traindat,C=1.2,epsilon=1e-5,num_threads=1):
	from shogun.Features import StringCharFeatures, Labels, DNA
	from shogun.Kernel import WeightedDegreeStringKernel
	try:
		from shogun.Classifier import SVMLight
	except ImportError:
		print 'No support for SVMLight available.'
		return
开发者ID:Anshul-Bansal,项目名称:gsoc,代码行数:31,代码来源:classifier_svmlight_modular.py

示例6: kernel_anova_modular

###########################################################################
# anova kernel
###########################################################################
from tools.load import LoadMatrix
from numpy import double
lm=LoadMatrix()

traindat = double(lm.load_numbers('../data/fm_train_real.dat'))
testdat = double(lm.load_numbers('../data/fm_test_real.dat'))
parameter_list = [[traindat,testdat,2,10], [traindat,testdat,5,10]]

def kernel_anova_modular (fm_train_real=traindat,fm_test_real=testdat,cardinality=2, size_cache=10):
	from shogun.Kernel import ANOVAKernel
	from shogun.Features import RealFeatures
	
	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	
	kernel=ANOVAKernel(feats_train, feats_train, cardinality, size_cache)
        
	for i in range(0,feats_train.get_num_vectors()):
		for j in range(0,feats_train.get_num_vectors()):
			k1 = kernel.compute_rec1(i,j)
			k2 = kernel.compute_rec2(i,j)
			#if abs(k1-k2) > 1e-10:
			#	print "|%s|%s|" % (k1, k2)

	km_train=kernel.get_kernel_matrix()
	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
	return km_train, km_test, kernel
开发者ID:ashish-sadh,项目名称:shogun,代码行数:31,代码来源:kernel_anova_modular.py

示例7: kernel_linearword

from tools.load import LoadMatrix
from numpy import ushort
from sg import sg
lm=LoadMatrix()

trainword=ushort(lm.load_numbers('../data/fm_test_word.dat'))
testword=ushort(lm.load_numbers('../data/fm_test_word.dat'))
parameter_list=[[trainword,testword,10,1.4],
	       [trainword,testword,11,1.5]]

def kernel_linearword (fm_train_word=trainword,fm_test_word=testword,
		       size_cache=10, scale=1.4):
	sg('set_features', 'TRAIN', fm_train_word)
	sg('set_features', 'TEST', fm_test_word)
	sg('set_kernel', 'LINEAR', 'WORD', size_cache, scale)
	km=sg('get_kernel_matrix', 'TRAIN')
	km=sg('get_kernel_matrix', 'TEST')
	return km

if __name__=='__main__':
	print('LinearWord')
	kernel_linearword(*parameter_list[0])
开发者ID:42MachineLearning,项目名称:shogun,代码行数:22,代码来源:kernel_linearword.py

示例8: distribution_histogram

# In this example the Histogram algorithm object computes a histogram over all
# 16bit unsigned integers in the features.

from tools.load import LoadMatrix
from sg import sg
lm=LoadMatrix()
traindna=lm.load_dna('../data/fm_train_dna.dat')
cubedna=lm.load_cubes('../data/fm_train_cube.dat')
parameter_list=[[traindna,cubedna,3,0,'n'],[traindna,cubedna,4,0,'n']]

def distribution_histogram(fm_train=traindna,fm_cube=cubedna,order=3,
			    gap=0,reverse='n'):

#	sg('new_distribution', 'HISTOGRAM')
	sg('add_preproc', 'SORTWORDSTRING')

	sg('set_features', 'TRAIN', fm_train, 'DNA')
	sg('convert', 'TRAIN', 'STRING', 'CHAR', 'STRING', 'WORD', order, order-1, gap, reverse)
	sg('attach_preproc', 'TRAIN')
#	sg('train_distribution')
#	histo=sg('get_histogram')

#	num_examples=11
#	num_param=sg('get_histogram_num_model_parameters')
#	for i in xrange(num_examples):
#		for j in xrange(num_param):
#			sg('get_log_derivative %d %d' % (j, i))

#	sg('get_log_likelihood')
#	return sg('get_log_likelihood_sample')
开发者ID:behollis,项目名称:muViewBranch,代码行数:30,代码来源:distribution_histogram.py

示例9: classifier_gmnpsvm

from tools.load import LoadMatrix
from sg import sg
lm=LoadMatrix()


traindat=lm.load_numbers('../data/fm_train_real.dat')
testdat=lm.load_numbers('../data/fm_test_real.dat')
train_label=lm.load_labels('../data/label_train_multiclass.dat')
parameter_list=[[traindat,testdat, train_label,10,2.1,1.2,1e-5,False],
		[traindat,testdat,train_label,10,2.1,1.3,1e-4,False]]

def classifier_gmnpsvm (fm_train_real=traindat,fm_test_real=testdat,
			label_train_multiclass=train_label,
			size_cache=10, width=2.1,C=1.2,
			epsilon=1e-5,use_bias=False):

	sg('set_features', 'TRAIN', fm_train_real)
	sg('set_kernel', 'GAUSSIAN', 'REAL', size_cache, width)

	sg('set_labels', 'TRAIN', label_train_multiclass)
	sg('new_classifier', 'GMNPSVM')
	sg('svm_epsilon', epsilon)
	sg('c', C)
	sg('svm_use_bias', use_bias)
	sg('train_classifier')

	sg('set_features', 'TEST', fm_test_real)
	result=sg('classify')
	kernel_matrix = sg('get_kernel_matrix', 'TEST')
	return result, kernel_matrix
开发者ID:AsherBond,项目名称:shogun,代码行数:30,代码来源:classifier_gmnpsvm.py

示例10: distance

def distance():
    print "Distance"

    width = 1.7
    size_cache = 10

    from sg import sg

    sg("set_features", "TRAIN", fm_train_real)
    sg("set_features", "TEST", fm_test_real)
    sg("set_distance", "EUCLIDIAN", "REAL")
    sg("set_kernel", "DISTANCE", size_cache, width)
    km = sg("get_kernel_matrix", "TRAIN")
    km = sg("get_kernel_matrix", "TEST")


if __name__ == "__main__":
    from tools.load import LoadMatrix

    lm = LoadMatrix()
    fm_train_real = lm.load_numbers("../data/fm_train_real.dat")
    fm_test_real = lm.load_numbers("../data/fm_test_real.dat")
    distance()
开发者ID:ktiwari9,项目名称:usc-clmc-ros-pkg,代码行数:23,代码来源:kernel_distance.py

示例11: evaluation_multiclassaccuracy_modular

#!/usr/bin/env python
from tools.load import LoadMatrix
from numpy import random
lm=LoadMatrix()

random.seed(17)
ground_truth = lm.load_labels('../data/label_train_multiclass.dat')
predicted = lm.load_labels('../data/label_train_multiclass.dat') * 2

parameter_list = [[ground_truth,predicted]]

def evaluation_multiclassaccuracy_modular (ground_truth, predicted):
	from shogun.Features import MulticlassLabels
	from shogun.Evaluation import MulticlassAccuracy

	ground_truth_labels = MulticlassLabels(ground_truth)
	predicted_labels = MulticlassLabels(predicted)
	
	evaluator = MulticlassAccuracy()
	accuracy = evaluator.evaluate(predicted_labels,ground_truth_labels)
	
	return accuracy


if __name__=='__main__':
	print('MulticlassAccuracy')
	evaluation_multiclassaccuracy_modular(*parameter_list[0])

开发者ID:AlexBinder,项目名称:shogun,代码行数:27,代码来源:evaluation_multiclassaccuracy_modular.py

示例12: PerformanceMeasures

	epsilon=1e-5
	labels=Labels(label_train_twoclass)

	svm=LibSVM(C, kernel, labels)
	svm.set_epsilon(epsilon)
	svm.train()

	#kernel.init(feats_train, feats_test)
	output = svm.classify(feats_test)#.get_labels()
        #output_vector = output.get_labels()
        out=svm.classify().get_labels()
        testerr=mean(sign(out)!=testlab)
        print testerr


	#sv_idx=svm.get_support_vectors()
	#alphas=svm.get_alphas()
        #pm = PerformanceMeasures(output_vector, output)
        #acc = pm.get_accuracy()
        #roc = pm.get_auROC()
        #fms = pm.get_fmeasure()


if __name__=='__main__':
	from tools.load import LoadMatrix
	lm=LoadMatrix()
	fm_train_real=lm.load_numbers('/home/mati/lib/shogun-0.9.3/examples/documented/data/fm_train_real.dat')
	fm_test_real=lm.load_numbers('/home/mati/lib/shogun-0.9.3/examples/documented/data/fm_test_real.dat')
	label_train_twoclass=lm.load_labels('/home/mati/lib/shogun-0.9.3/examples/documented/data/label_train_twoclass.dat')
	libsvm()
开发者ID:BrainTech,项目名称:openbci,代码行数:30,代码来源:svm.py

示例13: LoadMatrix

# In this example the distant segments kernel is being computed for toy data.

from tools.load import LoadMatrix

lm = LoadMatrix()
traindat = lm.load_dna("../data/fm_train_dna.dat")
testdat = lm.load_dna("../data/fm_test_dna.dat")

parameter_list = [[traindat, testdat, 5, 5], [traindat, testdat, 6, 6]]


def kernel_distantsegments_modular(fm_train_dna=traindat, fm_test_dna=testdat, delta=5, theta=5):
    from shogun.Features import StringCharFeatures, DNA
    from shogun.Kernel import DistantSegmentsKernel

    feats_train = StringCharFeatures(fm_train_dna, DNA)
    feats_test = StringCharFeatures(fm_test_dna, DNA)

    kernel = DistantSegmentsKernel(feats_train, feats_train, 10, delta, theta)

    km_train = kernel.get_kernel_matrix()
    kernel.init(feats_train, feats_test)
    km_test = kernel.get_kernel_matrix()

    return km_train, km_test, kernel


if __name__ == "__main__":
    print("DistantSegments")
    kernel_distantsegments_modular(*parameter_list[0])
开发者ID:behollis,项目名称:muViewBranch,代码行数:30,代码来源:kernel_distantsegments_modular.py

示例14: LoadMatrix

# In this example the Histogram algorithm object computes a histogram over all
# 16bit unsigned integers in the features.

from tools.load import LoadMatrix
from sg import sg

lm = LoadMatrix()
traindna = lm.load_dna("../data/fm_train_dna.dat")
cubedna = lm.load_cubes("../data/fm_train_cube.dat")
parameter_list = [[traindna, cubedna, 3, 0, "n"], [traindna, cubedna, 4, 0, "n"]]


def distribution_histogram(fm_train=traindna, fm_cube=cubedna, order=3, gap=0, reverse="n"):

    # 	sg('new_distribution', 'HISTOGRAM')
    sg("add_preproc", "SORTWORDSTRING")

    sg("set_features", "TRAIN", fm_train, "DNA")
    sg("convert", "TRAIN", "STRING", "CHAR", "STRING", "WORD", order, order - 1, gap, reverse)
    sg("attach_preproc", "TRAIN")


# 	sg('train_distribution')
# 	histo=sg('get_histogram')

# 	num_examples=11
# 	num_param=sg('get_histogram_num_model_parameters')
# 	for i in xrange(num_examples):
# 		for j in xrange(num_param):
# 			sg('get_log_derivative %d %d' % (j, i))
开发者ID:Anshul-Bansal,项目名称:gsoc,代码行数:30,代码来源:distribution_histogram.py

示例15: RealFeatures

    realfeat = RealFeatures(fm_train_real)
    feats_train = SparseRealFeatures()
    feats_train.obtain_from_simple(realfeat)
    realfeat = RealFeatures(fm_test_real)
    feats_test = SparseRealFeatures()
    feats_test.obtain_from_simple(realfeat)

    C = 0.9
    epsilon = 1e-5
    num_threads = 1
    labels = Labels(label_train_twoclass)

    svm = SVMOcas(C, feats_train, labels)
    svm.set_epsilon(epsilon)
    svm.parallel.set_num_threads(num_threads)
    svm.set_bias_enabled(False)
    svm.train()

    svm.set_features(feats_test)
    svm.classify().get_labels()


if __name__ == "__main__":
    from tools.load import LoadMatrix

    lm = LoadMatrix()
    fm_train_real = lm.load_numbers("../data/fm_train_real.dat")
    fm_test_real = lm.load_numbers("../data/fm_test_real.dat")
    label_train_twoclass = lm.load_labels("../data/label_train_twoclass.dat")
    svmocas()
开发者ID:polyactis,项目名称:test,代码行数:30,代码来源:classifier_svmocas_modular.py


注:本文中的tools.load.LoadMatrix类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。