当前位置: 首页>>代码示例>>Python>>正文


Python shared_randomstreams.RandomStreams类代码示例

本文整理汇总了Python中theano.tensor.shared_randomstreams.RandomStreams的典型用法代码示例。如果您正苦于以下问题:Python RandomStreams类的具体用法?Python RandomStreams怎么用?Python RandomStreams使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了RandomStreams类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: common_init

    def common_init(self, mr, vr, sr, di, ce, node_id):
        """
        Initialization function used by the base class and subclasses.
        """

        self.MEANRATE = mr
        self.VARRATE = vr
        self.STARVRATE = sr
        self.DIMS = di
        self.CENTS = ce
        self.ID = node_id
        srng = RandomStreams(seed=100)
        rv_u = srng.uniform((self.CENTS, self.DIMS))
        f = function([], rv_u)
        self.mean = 2*f()
        #print self.mean
        var1 = T.dscalar('var1')
        var2 = T.dmatrix('var2')
        var3 = T.mul
        self.var = theanoScaMatMul(0.001,np.ones((self.CENTS, self.DIMS)))
        self.starv = np.ones((self.CENTS, 1))
        self.belief = np.zeros((1, self.CENTS))
        self.children = []
        self.last = np.zeros((1, self.DIMS))
        self.whitening = False
开发者ID:cosmoharrigan,项目名称:python-destin,代码行数:25,代码来源:Clustering.py

示例2: theano_sentence_prediction

    def theano_sentence_prediction(self, Vs):
        #Make pairwise features. This is really just "tensor product with concatenation instead of multiplication". Is there a command for that?
        pairwise_vs, _ = theano.scan(fn=self.__pairwise_features,
                                  outputs_info=None,
                                  sequences=Vs,
                                  non_sequences=[Vs, Vs.shape[0]])

        if self.input_lstm_layer.training:
            srng = RandomStreams(seed=12345)
        
        full_matrix = self.input_lstm_layer.function(pairwise_vs)

        for layer in self.lstm_layers:            
            if self.input_lstm_layer.training:
                print("hah-train")
                full_matrix = T.switch(srng.binomial(size=(Vs.shape[0], Vs.shape[0]+1, self.hidden_dimension*4), p=0.5), full_matrix, 0)
            else:
                print("heh-notrain")
                full_matrix = 0.5 * full_matrix
            
            full_matrix = layer.function(full_matrix)

        if self.input_lstm_layer.training:
            print("hah-train")
            full_matrix = T.switch(srng.binomial(size=(Vs.shape[0], Vs.shape[0]+1, self.hidden_dimension*4), p=0.5), full_matrix, 0)
        else:
            print("heh-notrain")
            full_matrix = 0.5 * full_matrix
            
        final_matrix = self.output_convolution.function(full_matrix)

        return T.nnet.softmax(final_matrix)
开发者ID:MichSchli,项目名称:Speciale,代码行数:32,代码来源:corner_lstm.py

示例3: __init__

    def __init__(self, neurons, dimensions, count = 1, max_rate = (200, 300),
            intercept = (-1.0, 1.0), t_ref = 0.002, t_rc = 0.02, seed = None,
            type = 'lif', dt = 0.001, encoders = None, name = None, address = "localhost"):
        self.seed = seed
        self.neurons = neurons
        self.dimensions = dimensions
        self.count = count
        self.name = name
        self.address = address
        self.ticker_conn = None

        # create the neurons
        # TODO: handle different neuron types, which may have different parameters to pass in
        self.neuron = neuron.names[type]((count, self.neurons), t_rc = t_rc, t_ref = t_ref, dt = dt)

        # compute alpha and bias
        srng = RandomStreams(seed=seed)
        max_rates = srng.uniform([neurons], low=max_rate[0], high=max_rate[1])
        threshold = srng.uniform([neurons], low=intercept[0], high=intercept[1])
        alpha, self.bias = theano.function([], self.neuron.make_alpha_bias(max_rates,threshold))()
        self.bias = self.bias.astype('float32')

        # compute encoders
        self.encoders = make_encoders(neurons, dimensions, srng, encoders=encoders)
        self.encoders = (self.encoders.T * alpha).T

        # make default origin
        self.origin = dict(X=origin.Origin(self))
        self.accumulator = {}
开发者ID:LouisCastricato,项目名称:spike,代码行数:29,代码来源:ensemble.py

示例4: _dropout_from_layer

    def _dropout_from_layer(self, layer):

        stream = RandomStreams(self.numpy_range.randint(999999))

        mask = stream.binomial(size=layer.shape, n=1, p=(1-self._p), dtype=theano.config.floatX)

        return layer * Tensor.cast(mask, theano.config.floatX)
开发者ID:aviveise,项目名称:double_encoder,代码行数:7,代码来源:symmetric_dropout_hidden_layer.py

示例5: test_binomial_vector

    def test_binomial_vector(self):
        random = RandomStreams(utt.fetch_seed())
        n = tensor.lvector()
        prob = tensor.vector()
        out = random.binomial(n=n, p=prob)
        assert out.ndim == 1
        f = function([n, prob], out)

        n_val = [1, 2, 3]
        prob_val = numpy.asarray([.1, .2, .3], dtype=config.floatX)
        seed_gen = numpy.random.RandomState(utt.fetch_seed())
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))

        # Arguments of size (3,)
        val0 = f(n_val, prob_val)
        numpy_val0 = numpy_rng.binomial(n=n_val, p=prob_val)
        assert numpy.all(val0 == numpy_val0)

        # arguments of size (2,)
        val1 = f(n_val[:-1], prob_val[:-1])
        numpy_val1 = numpy_rng.binomial(n=n_val[:-1], p=prob_val[:-1])
        assert numpy.all(val1 == numpy_val1)

        # Specifying the size explicitly
        g = function([n, prob], random.binomial(n=n, p=prob, size=(3,)))
        val2 = g(n_val, prob_val)
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))
        numpy_val2 = numpy_rng.binomial(n=n_val, p=prob_val, size=(3,))
        assert numpy.all(val2 == numpy_val2)
        self.assertRaises(ValueError, g, n_val[:-1], prob_val[:-1])
开发者ID:ChinaQuants,项目名称:Theano,代码行数:30,代码来源:test_shared_randomstreams.py

示例6: test_uniform_vector

    def test_uniform_vector(self):
        random = RandomStreams(utt.fetch_seed())
        low = tensor.dvector()
        high = tensor.dvector()
        out = random.uniform(low=low, high=high)
        assert out.ndim == 1
        f = function([low, high], out)

        low_val = [.1, .2, .3]
        high_val = [1.1, 2.2, 3.3]
        seed_gen = numpy.random.RandomState(utt.fetch_seed())
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))

        # Arguments of size (3,)
        val0 = f(low_val, high_val)
        numpy_val0 = numpy_rng.uniform(low=low_val, high=high_val)
        print('THEANO', val0)
        print('NUMPY', numpy_val0)
        assert numpy.all(val0 == numpy_val0)

        # arguments of size (2,)
        val1 = f(low_val[:-1], high_val[:-1])
        numpy_val1 = numpy_rng.uniform(low=low_val[:-1], high=high_val[:-1])
        print('THEANO', val1)
        print('NUMPY', numpy_val1)
        assert numpy.all(val1 == numpy_val1)

        # Specifying the size explicitly
        g = function([low, high], random.uniform(low=low, high=high, size=(3,)))
        val2 = g(low_val, high_val)
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))
        numpy_val2 = numpy_rng.uniform(low=low_val, high=high_val, size=(3,))
        assert numpy.all(val2 == numpy_val2)
        self.assertRaises(ValueError, g, low_val[:-1], high_val[:-1])
开发者ID:ChinaQuants,项目名称:Theano,代码行数:34,代码来源:test_shared_randomstreams.py

示例7: _negative_sampling

    def _negative_sampling(self, num_negative_samples, target_indices):
        assert num_negative_samples > 0

        logging.debug('Stochastically sampling %d negative instances '
                      'out of %d classes (%.2f%%).',
                      num_negative_samples, self.num_entities,
                      100.0 *
                      float(num_negative_samples) / self.num_entities)

        from theano.tensor.shared_randomstreams import RandomStreams

        srng = RandomStreams(
            seed=np.random.randint(low=0, high=(1 << 30)))

        rng_sample_size = (self.batch_size, num_negative_samples,)

        logging.debug(
            'Using %s for random sample generation of %s tensors.',
            RandomStreams, rng_sample_size)

        logging.debug('For every batch %d random integers are sampled.',
                      np.prod(rng_sample_size))

        random_negative_indices = srng.choice(
            rng_sample_size,
            a=self.num_entities,
            p=self.clazz_distribution)

        if self.__DEBUG__:
            random_negative_indices = theano.printing.Print(
                'random_negative_indices')(random_negative_indices)

        return random_negative_indices
开发者ID:cvangysel,项目名称:SERT,代码行数:33,代码来源:models.py

示例8: test_multinomial_vector

    def test_multinomial_vector(self):
        random = RandomStreams(utt.fetch_seed())
        n = tensor.lvector()
        pvals = tensor.matrix()
        out = random.multinomial(n=n, pvals=pvals)
        assert out.ndim == 2
        f = function([n, pvals], out)

        n_val = [1, 2, 3]
        pvals_val = [[.1, .9], [.2, .8], [.3, .7]]
        pvals_val = numpy.asarray(pvals_val, dtype=config.floatX)
        seed_gen = numpy.random.RandomState(utt.fetch_seed())
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))

        # Arguments of size (3,)
        val0 = f(n_val, pvals_val)
        numpy_val0 = numpy.asarray([numpy_rng.multinomial(n=nv, pvals=pv)
            for nv, pv in zip(n_val, pvals_val)])
        assert numpy.all(val0 == numpy_val0)

        # arguments of size (2,)
        val1 = f(n_val[:-1], pvals_val[:-1])
        numpy_val1 = numpy.asarray([numpy_rng.multinomial(n=nv, pvals=pv)
            for nv, pv in zip(n_val[:-1], pvals_val[:-1])])
        assert numpy.all(val1 == numpy_val1)

        # Specifying the size explicitly
        g = function([n, pvals], random.multinomial(n=n, pvals=pvals, size=(3,)))
        val2 = g(n_val, pvals_val)
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))
        numpy_val2 = numpy.asarray([numpy_rng.multinomial(n=nv, pvals=pv)
            for nv, pv in zip(n_val, pvals_val)])
        assert numpy.all(val2 == numpy_val2)
        self.assertRaises(ValueError, g, n_val[:-1], pvals_val[:-1])
开发者ID:ChinaQuants,项目名称:Theano,代码行数:34,代码来源:test_shared_randomstreams.py

示例9: test_random_integers_vector

    def test_random_integers_vector(self):
        random = RandomStreams(utt.fetch_seed())
        low = tensor.lvector()
        high = tensor.lvector()
        out = random.random_integers(low=low, high=high)
        assert out.ndim == 1
        f = function([low, high], out)

        low_val = [100, 200, 300]
        high_val = [110, 220, 330]
        seed_gen = numpy.random.RandomState(utt.fetch_seed())
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))

        # Arguments of size (3,)
        val0 = f(low_val, high_val)
        numpy_val0 = numpy.asarray([numpy_rng.randint(low=lv, high=hv+1)
            for lv, hv in zip(low_val, high_val)])
        assert numpy.all(val0 == numpy_val0)

        # arguments of size (2,)
        val1 = f(low_val[:-1], high_val[:-1])
        numpy_val1 = numpy.asarray([numpy_rng.randint(low=lv, high=hv+1)
            for lv, hv in zip(low_val[:-1], high_val[:-1])])
        assert numpy.all(val1 == numpy_val1)

        # Specifying the size explicitly
        g = function([low, high], random.random_integers(low=low, high=high, size=(3,)))
        val2 = g(low_val, high_val)
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))
        numpy_val2 = numpy.asarray([numpy_rng.randint(low=lv, high=hv+1)
            for lv, hv in zip(low_val, high_val)])
        assert numpy.all(val2 == numpy_val2)
        self.assertRaises(ValueError, g, low_val[:-1], high_val[:-1])
开发者ID:ChinaQuants,项目名称:Theano,代码行数:33,代码来源:test_shared_randomstreams.py

示例10: prediction

    def prediction(self, h, bias):
        srng = RandomStreams(seed=42)

        prop, mean_x, mean_y, std_x, std_y, rho, bernoulli = \
            self.compute_parameters(h, bias)

        mode = T.argmax(srng.multinomial(pvals=prop, dtype=prop.dtype), axis=1)

        v = T.arange(0, mean_x.shape[0])
        m_x = mean_x[v, mode]
        m_y = mean_y[v, mode]
        s_x = std_x[v, mode]
        s_y = std_y[v, mode]
        r = rho[v, mode]
        # cov = r * (s_x * s_y)

        normal = srng.normal((h.shape[0], 2))
        x = normal[:, 0]
        y = normal[:, 1]

        # x_n = T.shape_padright(s_x * x + cov * y + m_x)
        # y_n = T.shape_padright(s_y * y + cov * x + m_y)

        x_n = T.shape_padright(m_x + s_x * x)
        y_n = T.shape_padright(m_y + s_y * (x * r + y * T.sqrt(1.-r**2)))

        uniform = srng.uniform((h.shape[0],))
        pin = T.shape_padright(T.cast(bernoulli > uniform, floatX))

        return T.concatenate([x_n, y_n, pin], axis=1)
开发者ID:adbrebs,项目名称:handwriting,代码行数:30,代码来源:model.py

示例11: __init__

    def __init__(self, n_visible, n_hidden, weights=None, hidden_bias=None, visible_bias=None, random_on_gpu=False,
                 seed=69, activation=T.nnet.sigmoid):
        self.n_visible = n_visible
        self.n_hidden = n_hidden

        if random_on_gpu:
            self.t_rng = GPU_RandomStreams(seed)
        else:
            self.t_rng = RandomStreams(seed)

        if not weights:
            weights = np.asarray(
                np.random.normal(
                    scale=0.01,
                    size=(self.n_visible, self.n_hidden)),
                dtype=theano.config.floatX)
        self.ts_weights = theano.shared(value=weights, name='W', borrow=True)

        if not hidden_bias:
            hidden_bias = np.zeros(n_hidden, dtype=theano.config.floatX)

        self.ts_hidden_bias = theano.shared(value=hidden_bias, name='hb', borrow=True)

        if not visible_bias:
            visible_bias = np.zeros(n_visible, dtype=theano.config.floatX)

        self.ts_visible_bias = theano.shared(value=visible_bias, name='vb', borrow=True)

        self.x = T.matrix(name='x')

        self.activation = activation

        self.params = [self.ts_weights, self.ts_hidden_bias, self.ts_visible_bias]
开发者ID:Craftinity,项目名称:DA-AGH,代码行数:33,代码来源:autoencoders.py

示例12: theano_sentence_prediction

    def theano_sentence_prediction(self, Sentence, Chars, WordLengths):

        input_lstm_res_f = self.input_lstm_forward_layer.function(Sentence, Chars, WordLengths)
        input_lstm_res_b = self.input_lstm_backward_layer.function(Sentence, Chars, WordLengths)
        input_combined = T.concatenate((input_lstm_res_f, input_lstm_res_b), axis=1)

        #Make pairwise features. This is really just "tensor product with concatenation instead of multiplication". Is there a command for that?
        full_matrix, _ = theano.scan(fn=self.__pairwise_features,
                                  outputs_info=None,
                                  sequences=input_combined,
                                  non_sequences=[input_combined, Sentence.shape[0]])

        if len(self.lstm_layers) > 0 and self.lstm_layers[0].training:
            srng = RandomStreams(seed=12345)
            full_matrix = T.switch(srng.binomial(size=(Sentence.shape[0], Sentence.shape[0]+1, self.hidden_dimension*4), p=0.5), full_matrix, 0)
        else:
            full_matrix = 0.5 * full_matrix

        full_matrix = self.transition_layer.function(full_matrix)
            
        for layer in self.lstm_layers:
            if layer.training:
                print("hah-train")
                full_matrix = T.switch(srng.binomial(size=(Sentence.shape[0], Sentence.shape[0]+1, self.hidden_dimension*4), p=0.5), full_matrix, 0)
            else:
                print("heh-notrain")
                full_matrix = 0.5 * full_matrix
            
            
            full_matrix = layer.function(full_matrix)
        
        final_matrix = self.output_convolution.function(full_matrix)

        return T.nnet.softmax(final_matrix)
开发者ID:MichSchli,项目名称:Speciale,代码行数:34,代码来源:fourway_lstm_both.py

示例13: test_default_dtype

    def test_default_dtype(self):
        random = RandomStreams(utt.fetch_seed())
        low = tensor.dscalar()
        high = tensor.dscalar()

        # Should not silently downcast from low and high
        out0 = random.uniform(low=low, high=high, size=(42,))
        assert out0.dtype == 'float64'
        f0 = function([low, high], out0)
        val0 = f0(-2.1, 3.1)
        assert val0.dtype == 'float64'

        # Should downcast, since asked explicitly
        out1 = random.uniform(low=low, high=high, size=(42,), dtype='float32')
        assert out1.dtype == 'float32'
        f1 = function([low, high], out1)
        val1 = f1(-1.1, 1.1)
        assert val1.dtype == 'float32'

        # Should use floatX
        lowf = tensor.fscalar()
        highf = tensor.fscalar()
        outf = random.uniform(low=lowf, high=highf, size=(42,))
        assert outf.dtype == config.floatX
        ff = function([lowf, highf], outf)
        valf = ff(numpy.float32(-0.1), numpy.float32(0.3))
        assert valf.dtype == config.floatX
开发者ID:ChinaQuants,项目名称:Theano,代码行数:27,代码来源:test_shared_randomstreams.py

示例14: __init__

    def __init__(self, rng, train_input, test_input, n_in, n_out):

        # self.input = input.flatten(2)

        self.W = theano.shared(
            value=numpy.asarray(
                rng.uniform(
                    low=-numpy.sqrt(6. / (n_in + n_out)),
                    high=numpy.sqrt(6. / (n_in + n_out)),
                    size=(n_in, n_out)
                ),
                dtype=theano.config.floatX
            ),
            name='W',
            borrow=True
        )

        self.b = theano.shared(
            value=numpy.zeros((n_out,), dtype=theano.config.floatX),
            name='b',
            borrow=True
        )

        p = 0.5

        tmp_output = T.nnet.relu(T.dot(train_input.flatten(2), self.W) + self.b)
        srng = RandomStreams(rng.randint(1234))
        mask = (srng.uniform(size=tmp_output.shape) < p)/p

        self.train_output = tmp_output * mask
        self.test_output = T.nnet.relu(T.dot(test_input.flatten(2), self.W) + self.b)
        self.params = [self.W, self.b]
开发者ID:yangli625,项目名称:ReId_theano,代码行数:32,代码来源:Layer.py

示例15: test_normal_vector

    def test_normal_vector(self):
        random = RandomStreams(utt.fetch_seed())
        avg = tensor.dvector()
        std = tensor.dvector()
        out = random.normal(avg=avg, std=std)
        assert out.ndim == 1
        f = function([avg, std], out)

        avg_val = [1, 2, 3]
        std_val = [.1, .2, .3]
        seed_gen = numpy.random.RandomState(utt.fetch_seed())
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))

        # Arguments of size (3,)
        val0 = f(avg_val, std_val)
        numpy_val0 = numpy_rng.normal(loc=avg_val, scale=std_val)
        assert numpy.allclose(val0, numpy_val0)

        # arguments of size (2,)
        val1 = f(avg_val[:-1], std_val[:-1])
        numpy_val1 = numpy_rng.normal(loc=avg_val[:-1], scale=std_val[:-1])
        assert numpy.allclose(val1, numpy_val1)

        # Specifying the size explicitly
        g = function([avg, std], random.normal(avg=avg, std=std, size=(3,)))
        val2 = g(avg_val, std_val)
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))
        numpy_val2 = numpy_rng.normal(loc=avg_val, scale=std_val, size=(3,))
        assert numpy.allclose(val2, numpy_val2)
        self.assertRaises(ValueError, g, avg_val[:-1], std_val[:-1])
开发者ID:ChinaQuants,项目名称:Theano,代码行数:30,代码来源:test_shared_randomstreams.py


注:本文中的theano.tensor.shared_randomstreams.RandomStreams类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。