本文整理汇总了Python中tensorflow.python.data.Dataset.from_tensor_slices方法的典型用法代码示例。如果您正苦于以下问题:Python Dataset.from_tensor_slices方法的具体用法?Python Dataset.from_tensor_slices怎么用?Python Dataset.from_tensor_slices使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.data.Dataset
的用法示例。
在下文中一共展示了Dataset.from_tensor_slices方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: benchmarkSliceBatchCacheRepeatCallable
# 需要导入模块: from tensorflow.python.data import Dataset [as 别名]
# 或者: from tensorflow.python.data.Dataset import from_tensor_slices [as 别名]
def benchmarkSliceBatchCacheRepeatCallable(self):
input_size = 10000
batch_size = 100
num_epochs = 100
input_data = np.random.randn(input_size)
dataset = (
Dataset.from_tensor_slices(input_data).batch(batch_size).cache()
.repeat(num_epochs))
iterator = datasets.Iterator(dataset)
ends = [time.time()]
for _ in iterator:
ends.append(time.time())
deltas = np.ediff1d(ends)
median_wall_time = np.median(deltas)
print(
'Slice/batch/cache/repeat eager input size: %d batch size: %d Median '
'wall time per element: %f'
% (input_size, batch_size, median_wall_time))
self.report_benchmark(
iters=len(deltas),
wall_time=median_wall_time,
name='benchmark_slice_batch_cache_repeat_eager_input_%d_batch_%d' %
(input_size, batch_size))
示例2: testMultipleIteratorsOnADatasetThatUsesFunctions
# 需要导入模块: from tensorflow.python.data import Dataset [as 别名]
# 或者: from tensorflow.python.data.Dataset import from_tensor_slices [as 别名]
def testMultipleIteratorsOnADatasetThatUsesFunctions(self):
ds = Dataset.from_tensor_slices([1, 2, 3, 4, 5, 6]).map(math_ops.square)
got1 = [x.numpy() for x in datasets.Iterator(ds)]
self.assertAllEqual([1, 4, 9, 16, 25, 36], got1)
got2 = [x.numpy() for x in datasets.Iterator(ds)]
self.assertAllEqual(got1, got2)
示例3: my_input_fn
# 需要导入模块: from tensorflow.python.data import Dataset [as 别名]
# 或者: from tensorflow.python.data.Dataset import from_tensor_slices [as 别名]
def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):
""" Trains a linear regression model of one feature.
Args:
:param features: pandas DataFrame of features
:param targets: pandas DataFrame of targets
:param batch_size: size of batches to be passed to the model
:param shuffle: weather to shuffle the data
:param num_epochs: number of epochs for which data should be repeated. None = repeat indefinitely
:return:
Tuple of (features, labels) for next data batch
"""
# Convert pandas data into a dict of np arrays.
features = {key: np.array(value) for key, value in dict(features).items()}
# Construct a dataset, and configure batching/repeating.
ds = Dataset.from_tensor_slices((features, targets))
ds = ds.batch(batch_size).repeat(num_epochs)
# Shuffle the data, if specified.
if shuffle:
ds.shuffle(buffer_size=10000)
# Return the next batch of data.
features, labels = ds.make_one_shot_iterator().get_next()
return features, labels
示例4: testSaveRestoreMultipleIterator
# 需要导入模块: from tensorflow.python.data import Dataset [as 别名]
# 或者: from tensorflow.python.data.Dataset import from_tensor_slices [as 别名]
def testSaveRestoreMultipleIterator(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, 'ckpt')
dataset = Dataset.from_tensor_slices([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
dataset = dataset.map(math_ops.square).batch(2)
iterator_1 = datasets.Iterator(dataset)
iterator_2 = datasets.Iterator(dataset)
dataset_2 = Dataset.range(10)
iterator_3 = datasets.Iterator(dataset_2)
checkpoint = checkpointable_utils.Checkpoint(
iterator_1=iterator_1, iterator_2=iterator_2, iterator_3=iterator_3)
self.assertAllEqual([1, 4], iterator_1.get_next().numpy())
self.assertEqual(0, iterator_3.get_next().numpy())
self.assertEqual(1, iterator_3.get_next().numpy())
self.assertEqual(2, iterator_3.get_next().numpy())
save_path = checkpoint.save(checkpoint_prefix)
self.assertAllEqual([1, 4], iterator_2.get_next().numpy())
self.assertAllEqual([9, 16], iterator_2.get_next().numpy())
self.assertEqual(3, iterator_3.get_next().numpy())
checkpoint.restore(save_path)
self.assertAllEqual([9, 16], iterator_1.get_next().numpy())
self.assertAllEqual([1, 4], iterator_2.get_next().numpy())
self.assertEqual(3, iterator_3.get_next().numpy())
示例5: testMapCaptureLookupTable
# 需要导入模块: from tensorflow.python.data import Dataset [as 别名]
# 或者: from tensorflow.python.data.Dataset import from_tensor_slices [as 别名]
def testMapCaptureLookupTable(self):
default_val = -1
keys = constant_op.constant(['brain', 'salad', 'surgery'])
values = constant_op.constant([0, 1, 2], dtypes.int64)
table = lookup.HashTable(
lookup.KeyValueTensorInitializer(keys, values), default_val)
dataset = Dataset.from_tensor_slices(['brain', 'salad', 'surgery'])
dataset = dataset.map(table.lookup)
it = datasets.Iterator(dataset)
got = [x.numpy() for x in it]
self.assertAllEqual([0, 1, 2], got)
示例6: testTensorsExplicitPrefetchToDevice
# 需要导入模块: from tensorflow.python.data import Dataset [as 别名]
# 或者: from tensorflow.python.data.Dataset import from_tensor_slices [as 别名]
def testTensorsExplicitPrefetchToDevice(self):
ds = Dataset.from_tensor_slices([0., 1.])
ds = ds.apply(prefetching_ops.prefetch_to_device(test.gpu_device_name()))
with self.assertRaisesRegexp(TypeError, 'prefetch_to_device'):
datasets.Iterator(ds)
for i, x in enumerate(ds):
with ops.device(test.gpu_device_name()):
x = math_ops.add(x, x)
self.assertEqual(float(i) + float(i), x.numpy())
示例7: testSaveRestore
# 需要导入模块: from tensorflow.python.data import Dataset [as 别名]
# 或者: from tensorflow.python.data.Dataset import from_tensor_slices [as 别名]
def testSaveRestore(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, 'ckpt')
dataset = Dataset.from_tensor_slices([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
dataset = dataset.map(math_ops.square).batch(2)
iterator = datasets.Iterator(dataset)
checkpoint = checkpointable_utils.Checkpoint(iterator=iterator)
self.assertAllEqual([1, 4], iterator.get_next().numpy())
save_path = checkpoint.save(checkpoint_prefix)
self.assertAllEqual([9, 16], iterator.get_next().numpy())
self.assertAllEqual([25, 36], iterator.get_next().numpy())
checkpoint.restore(save_path)
self.assertAllEqual([9, 16], iterator.get_next().numpy())
self.assertAllEqual([25, 36], iterator.get_next().numpy())
示例8: my_input_fn
# 需要导入模块: from tensorflow.python.data import Dataset [as 别名]
# 或者: from tensorflow.python.data.Dataset import from_tensor_slices [as 别名]
def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):
# 将 pandas 的 data 转换成 numpy arrays
features = {key: np.array(value) for key, value in dict(features).items()}
# 构造一个 tensorflow 的 Dataset, 并且配置 batching 和 repeating
ds = Dataset.from_tensor_slices((features, targets))
ds = ds.batch(batch_size).repeat(num_epochs)
# 按需随机打乱数据
if shuffle:
ds = ds.shuffle(buffer_size=10000)
# 返回下一批次的数据
features, labels = ds.make_one_shot_iterator().get_next()
return features, labels
示例9: testSparseTensorElements
# 需要导入模块: from tensorflow.python.data import Dataset [as 别名]
# 或者: from tensorflow.python.data.Dataset import from_tensor_slices [as 别名]
def testSparseTensorElements(self):
components = (sparse_tensor.SparseTensorValue(
indices=np.array([[0, 0], [1, 0], [2, 0]]),
values=np.array([0, 0, 0]),
dense_shape=np.array([3, 1])),
sparse_tensor.SparseTensorValue(
indices=np.array([[0, 0], [1, 1], [2, 2]]),
values=np.array([1, 2, 3]),
dense_shape=np.array([3, 3])))
expected = [
(sparse_tensor.SparseTensorValue(
indices=np.array([[0]]),
values=np.array([0]),
dense_shape=np.array([1])),
sparse_tensor.SparseTensorValue(
indices=np.array([[0]]),
values=np.array([1]),
dense_shape=np.array([3]))),
(sparse_tensor.SparseTensorValue(
indices=np.array([[0]]),
values=np.array([0]),
dense_shape=np.array([1])),
sparse_tensor.SparseTensorValue(
indices=np.array([[1]]),
values=np.array([2]),
dense_shape=np.array([3]))),
(sparse_tensor.SparseTensorValue(
indices=np.array([[0]]),
values=np.array([0]),
dense_shape=np.array([1])),
sparse_tensor.SparseTensorValue(
indices=np.array([[2]]),
values=np.array([3]),
dense_shape=np.array([3]))),
]
for i, result in enumerate(
datasets.Iterator(Dataset.from_tensor_slices(components))):
self.assertSparseValuesEqual(expected[i][0], result[0])
self.assertSparseValuesEqual(expected[i][1], result[1])