本文整理汇总了Python中sympy.polys.Poly.subs方法的典型用法代码示例。如果您正苦于以下问题:Python Poly.subs方法的具体用法?Python Poly.subs怎么用?Python Poly.subs使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy.polys.Poly
的用法示例。
在下文中一共展示了Poly.subs方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_issue_8438
# 需要导入模块: from sympy.polys import Poly [as 别名]
# 或者: from sympy.polys.Poly import subs [as 别名]
def test_issue_8438():
p = Poly([1, y, -2, -3], x).as_expr()
roots = roots_cubic(Poly(p, x), x)
z = -S(3)/2 - 7*I/2 # this will fail in code given in commit msg
post = [r.subs(y, z) for r in roots]
assert set(post) == \
set(roots_cubic(Poly(p.subs(y, z), x)))
# /!\ if p is not made an expression, this is *very* slow
assert all(p.subs({y: z, x: i}).n(2, chop=True) == 0 for i in post)
示例2: test_roots_quartic
# 需要导入模块: from sympy.polys import Poly [as 别名]
# 或者: from sympy.polys.Poly import subs [as 别名]
def test_roots_quartic():
assert roots_quartic(Poly(x**4, x)) == [0, 0, 0, 0]
assert roots_quartic(Poly(x**4 + x**3, x)) in [
[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, -1]
]
assert roots_quartic(Poly(x**4 - x**3, x)) in [
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
]
lhs = roots_quartic(Poly(x**4 + x, x))
rhs = [S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2, S.Zero, -S.One]
assert sorted(lhs, key=hash) == sorted(rhs, key=hash)
# test of all branches of roots quartic
for i, (a, b, c, d) in enumerate([(1, 2, 3, 0),
(3, -7, -9, 9),
(1, 2, 3, 4),
(1, 2, 3, 4),
(-7, -3, 3, -6),
(-3, 5, -6, -4),
(6, -5, -10, -3)]):
if i == 2:
c = -a*(a**2/S(8) - b/S(2))
elif i == 3:
d = a*(a*(3*a**2/S(256) - b/S(16)) + c/S(4))
eq = x**4 + a*x**3 + b*x**2 + c*x + d
ans = roots_quartic(Poly(eq, x))
assert all(eq.subs(x, ai).n(chop=True) == 0 for ai in ans)
# not all symbolic quartics are unresolvable
eq = Poly(q*x + q/4 + x**4 + x**3 + 2*x**2 - Rational(1, 3), x)
sol = roots_quartic(eq)
assert all(verify_numerically(eq.subs(x, i), 0) for i in sol)
z = symbols('z', negative=True)
eq = x**4 + 2*x**3 + 3*x**2 + x*(z + 11) + 5
zans = roots_quartic(Poly(eq, x))
assert all([verify_numerically(eq.subs(((x, i), (z, -1))), 0) for i in zans])
# but some are (see also issue 4989)
# it's ok if the solution is not Piecewise, but the tests below should pass
eq = Poly(y*x**4 + x**3 - x + z, x)
ans = roots_quartic(eq)
assert all(type(i) == Piecewise for i in ans)
reps = (
dict(y=-Rational(1, 3), z=-Rational(1, 4)), # 4 real
dict(y=-Rational(1, 3), z=-Rational(1, 2)), # 2 real
dict(y=-Rational(1, 3), z=-2)) # 0 real
for rep in reps:
sol = roots_quartic(Poly(eq.subs(rep), x))
assert all([verify_numerically(w.subs(rep) - s, 0) for w, s in zip(ans, sol)])
示例3: max_onepiece
# 需要导入模块: from sympy.polys import Poly [as 别名]
# 或者: from sympy.polys.Poly import subs [as 别名]
def max_onepiece(x, f: Poly, g: Poly, l, u):
roots = sorted(set((f - g).real_roots()))
new_polynomial_pieces = []
new_bounds = [l]
for r in roots:
if l < r < u:
m = (r + new_bounds[-1]) / 2
if f.subs(x, m) >= g.subs(x, m):
new_polynomial_pieces.append(f)
else:
new_polynomial_pieces.append(g)
new_bounds.append(r)
new_bounds.append(u)
return PiecewisePolynomial(new_polynomial_pieces, new_bounds)
示例4: test_roots_quartic
# 需要导入模块: from sympy.polys import Poly [as 别名]
# 或者: from sympy.polys.Poly import subs [as 别名]
def test_roots_quartic():
assert roots_quartic(Poly(x ** 4, x)) == [0, 0, 0, 0]
assert roots_quartic(Poly(x ** 4 + x ** 3, x)) in [[-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]
assert roots_quartic(Poly(x ** 4 - x ** 3, x)) in [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]
lhs = roots_quartic(Poly(x ** 4 + x, x))
rhs = [S.Half + I * sqrt(3) / 2, S.Half - I * sqrt(3) / 2, S.Zero, -S.One]
assert sorted(lhs, key=hash) == sorted(rhs, key=hash)
# test of all branches of roots quartic
for i, (a, b, c, d) in enumerate(
[(1, 2, 3, 0), (3, -7, -9, 9), (1, 2, 3, 4), (1, 2, 3, 4), (-7, -3, 3, -6), (-3, 5, -6, -4), (6, -5, -10, -3)]
):
if i == 2:
c = -a * (a ** 2 / S(8) - b / S(2))
elif i == 3:
d = a * (a * (3 * a ** 2 / S(256) - b / S(16)) + c / S(4))
eq = x ** 4 + a * x ** 3 + b * x ** 2 + c * x + d
ans = roots_quartic(Poly(eq, x))
assert all(eq.subs(x, ai).n(chop=True) == 0 for ai in ans)
# not all symbolic quartics are unresolvable
eq = Poly(q * x + q / 4 + x ** 4 + x ** 3 + 2 * x ** 2 - Rational(1, 3), x)
sol = roots_quartic(eq)
assert all(test_numerically(eq.subs(x, i), 0) for i in sol)
# but some are (see also iss 1890)
raises(PolynomialError, lambda: roots_quartic(Poly(y * x ** 4 + x + z, x)))
示例5: gosper_term
# 需要导入模块: from sympy.polys import Poly [as 别名]
# 或者: from sympy.polys.Poly import subs [as 别名]
def gosper_term(f, n):
r"""
Compute Gosper's hypergeometric term for ``f``.
Suppose ``f`` is a hypergeometric term such that:
.. math::
s_n = \sum_{k=0}^{n-1} f_k
and `f_k` doesn't depend on `n`. Returns a hypergeometric
term `g_n` such that `g_{n+1} - g_n = f_n`.
**Examples**
>>> from sympy.concrete.gosper import gosper_term
>>> from sympy.functions import factorial
>>> from sympy.abc import n
>>> gosper_term((4*n + 1)*factorial(n)/factorial(2*n + 1), n)
(-n - 1/2)/(n + 1/4)
"""
r = hypersimp(f, n)
if r is None:
return None # 'f' is *not* a hypergeometric term
p, q = r.as_numer_denom()
A, B, C = gosper_normal(p, q, n)
B = B.shift(-1)
N = S(A.degree())
M = S(B.degree())
K = S(C.degree())
if (N != M) or (A.LC() != B.LC()):
D = set([K - max(N, M)])
elif not N:
D = set([K - N + 1, S(0)])
else:
D = set([K - N + 1, (B.nth(N - 1) - A.nth(N - 1)) / A.LC()])
for d in set(D):
if not d.is_Integer or d < 0:
D.remove(d)
if not D:
return None # 'f(n)' is *not* Gosper-summable
d = max(D)
coeffs = symbols("c:%s" % (d + 1), cls=Dummy)
domain = A.get_domain().inject(*coeffs)
x = Poly(coeffs, n, domain=domain)
H = A * x.shift(1) - B * x - C
solution = solve(H.coeffs(), coeffs)
if solution is None:
return None # 'f(n)' is *not* Gosper-summable
x = x.as_expr().subs(solution)
for coeff in coeffs:
if coeff not in solution:
x = x.subs(coeff, 0)
if x is S.Zero:
return None # 'f(n)' is *not* Gosper-summable
else:
return B.as_expr() * x / C.as_expr()
示例6: _ratsimpmodprime
# 需要导入模块: from sympy.polys import Poly [as 别名]
# 或者: from sympy.polys.Poly import subs [as 别名]
def _ratsimpmodprime(a, b, allsol, N=0, D=0):
r"""
Computes a rational simplification of ``a/b`` which minimizes
the sum of the total degrees of the numerator and the denominator.
The algorithm proceeds by looking at ``a * d - b * c`` modulo
the ideal generated by ``G`` for some ``c`` and ``d`` with degree
less than ``a`` and ``b`` respectively.
The coefficients of ``c`` and ``d`` are indeterminates and thus
the coefficients of the normalform of ``a * d - b * c`` are
linear polynomials in these indeterminates.
If these linear polynomials, considered as system of
equations, have a nontrivial solution, then `\frac{a}{b}
\equiv \frac{c}{d}` modulo the ideal generated by ``G``. So,
by construction, the degree of ``c`` and ``d`` is less than
the degree of ``a`` and ``b``, so a simpler representation
has been found.
After a simpler representation has been found, the algorithm
tries to reduce the degree of the numerator and denominator
and returns the result afterwards.
As an extension, if quick=False, we look at all possible degrees such
that the total degree is less than *or equal to* the best current
solution. We retain a list of all solutions of minimal degree, and try
to find the best one at the end.
"""
c, d = a, b
steps = 0
maxdeg = a.total_degree() + b.total_degree()
if quick:
bound = maxdeg - 1
else:
bound = maxdeg
while N + D <= bound:
if (N, D) in tested:
break
tested.add((N, D))
M1 = staircase(N)
M2 = staircase(D)
debug('%s / %s: %s, %s' % (N, D, M1, M2))
Cs = symbols("c:%d" % len(M1), cls=Dummy)
Ds = symbols("d:%d" % len(M2), cls=Dummy)
ng = Cs + Ds
c_hat = Poly(
sum([Cs[i] * M1[i] for i in range(len(M1))]), opt.gens + ng)
d_hat = Poly(
sum([Ds[i] * M2[i] for i in range(len(M2))]), opt.gens + ng)
r = reduced(a * d_hat - b * c_hat, G, opt.gens + ng,
order=opt.order, polys=True)[1]
S = Poly(r, gens=opt.gens).coeffs()
sol = solve(S, Cs + Ds, particular=True, quick=True)
if sol and not all([s == 0 for s in sol.values()]):
c = c_hat.subs(sol)
d = d_hat.subs(sol)
# The "free" variables occurring before as parameters
# might still be in the substituted c, d, so set them
# to the value chosen before:
c = c.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))
d = d.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))
c = Poly(c, opt.gens)
d = Poly(d, opt.gens)
if d == 0:
raise ValueError('Ideal not prime?')
allsol.append((c_hat, d_hat, S, Cs + Ds))
if N + D != maxdeg:
allsol = [allsol[-1]]
break
steps += 1
N += 1
D += 1
if steps > 0:
c, d, allsol = _ratsimpmodprime(c, d, allsol, N, D - steps)
c, d, allsol = _ratsimpmodprime(c, d, allsol, N - steps, D)
return c, d, allsol