当前位置: 首页>>代码示例>>Python>>正文


Python Poly.monoms方法代码示例

本文整理汇总了Python中sympy.polys.Poly.monoms方法的典型用法代码示例。如果您正苦于以下问题:Python Poly.monoms方法的具体用法?Python Poly.monoms怎么用?Python Poly.monoms使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sympy.polys.Poly的用法示例。


在下文中一共展示了Poly.monoms方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: ratint_logpart

# 需要导入模块: from sympy.polys import Poly [as 别名]
# 或者: from sympy.polys.Poly import monoms [as 别名]
def ratint_logpart(f, g, x, t=None):
    """
    Lazard-Rioboo-Trager algorithm.

    Given a field K and polynomials f and g in K[x], such that f and g
    are coprime, deg(f) < deg(g) and g is square-free, returns a list
    of tuples (s_i, q_i) of polynomials, for i = 1..n, such that s_i
    in K[t, x] and q_i in K[t], and:
                           ___    ___
                 d  f   d  \  `   \  `
                 -- - = --  )      )   a log(s_i(a, x))
                 dx g   dx /__,   /__,
                          i=1..n a | q_i(a) = 0

    Examples
    ========

        >>> from sympy.integrals.rationaltools import ratint_logpart
        >>> from sympy.abc import x
        >>> from sympy import Poly
        >>> ratint_logpart(Poly(1, x, domain='ZZ'),
        ... Poly(x**2 + x + 1, x, domain='ZZ'), x)
        [(Poly(x + 3*_t/2 + 1/2, x, domain='QQ[_t]'),
        ...Poly(3*_t**2 + 1, _t, domain='ZZ'))]
        >>> ratint_logpart(Poly(12, x, domain='ZZ'),
        ... Poly(x**2 - x - 2, x, domain='ZZ'), x)
        [(Poly(x - 3*_t/8 - 1/2, x, domain='QQ[_t]'),
        ...Poly(-_t**2 + 16, _t, domain='ZZ'))]

    See Also
    ========

    ratint, ratint_ratpart
    """
    f, g = Poly(f, x), Poly(g, x)

    t = t or Dummy('t')
    a, b = g, f - g.diff()*Poly(t, x)

    res, R = resultant(a, b, includePRS=True)
    res = Poly(res, t, composite=False)

    assert res, "BUG: resultant(%s, %s) can't be zero" % (a, b)

    R_map, H = {}, []

    for r in R:
        R_map[r.degree()] = r

    def _include_sign(c, sqf):
        if (c < 0) is True:
            h, k = sqf[0]
            sqf[0] = h*c, k

    C, res_sqf = res.sqf_list()
    _include_sign(C, res_sqf)

    for q, i in res_sqf:
        _, q = q.primitive()

        if g.degree() == i:
            H.append((g, q))
        else:
            h = R_map[i]
            h_lc = Poly(h.LC(), t, field=True)

            c, h_lc_sqf = h_lc.sqf_list(all=True)
            _include_sign(c, h_lc_sqf)

            for a, j in h_lc_sqf:
                h = h.quo(Poly(a.gcd(q)**j, x))

            inv, coeffs = h_lc.invert(q), [S(1)]

            for coeff in h.coeffs()[1:]:
                T = (inv*coeff).rem(q)
                coeffs.append(T.as_expr())

            h = Poly(dict(list(zip(h.monoms(), coeffs))), x)

            H.append((h, q))

    return H
开发者ID:AALEKH,项目名称:sympy,代码行数:85,代码来源:rationaltools.py

示例2: ratint_logpart

# 需要导入模块: from sympy.polys import Poly [as 别名]
# 或者: from sympy.polys.Poly import monoms [as 别名]
def ratint_logpart(f, g, x, t=None):
    """Lazard-Rioboo-Trager algorithm.

       Given a field K and polynomials f and g in K[x], such that f and g
       are coprime, deg(f) < deg(g) and g is square-free, returns a list
       of tuples (s_i, q_i) of polynomials, for i = 1..n, such that s_i
       in K[t, x] and q_i in K[t], and:
                               ___    ___
                     d  f   d  \  `   \  `
                     -- - = --  )      )   a log(s_i(a, x))
                     dx g   dx /__,   /__,
                              i=1..n a | q_i(a) = 0

    """
    f, g = Poly(f, x), Poly(g, x)

    t = t or Dummy('t')
    a, b = g, f - g.diff()*Poly(t, x)

    R = subresultants(a, b)
    res = Poly(resultant(a, b), t)

    R_map, H = {}, []

    for r in R:
        R_map[r.degree()] = r

    def _include_sign(c, sqf):
        if c < 0:
            h, k = sqf[0]
            sqf[0] = h*c, k

    C, res_sqf = res.sqf_list()
    _include_sign(C, res_sqf)

    for q, i in res_sqf:
        _, q = q.primitive()

        if g.degree() == i:
            H.append((g, q))
        else:
            h = R_map[i]
            h_lc = Poly(h.LC(), t, field=True)

            c, h_lc_sqf = h_lc.sqf_list(all=True)
            _include_sign(c, h_lc_sqf)

            for a, j in h_lc_sqf:
                h = h.exquo(Poly(a.gcd(q)**j, x))

            inv, coeffs = h_lc.invert(q), [S(1)]

            for coeff in h.coeffs()[1:]:
                T = (inv*coeff).rem(q)
                coeffs.append(T.as_basic())

            h = Poly(dict(zip(h.monoms(), coeffs)), x)

            H.append((h, q))

    return H
开发者ID:Aang,项目名称:sympy,代码行数:63,代码来源:rationaltools.py


注:本文中的sympy.polys.Poly.monoms方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。