当前位置: 首页>>代码示例>>Python>>正文


Python ReferenceFrame.orientnew方法代码示例

本文整理汇总了Python中sympy.physics.vector.ReferenceFrame.orientnew方法的典型用法代码示例。如果您正苦于以下问题:Python ReferenceFrame.orientnew方法的具体用法?Python ReferenceFrame.orientnew怎么用?Python ReferenceFrame.orientnew使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sympy.physics.vector.ReferenceFrame的用法示例。


在下文中一共展示了ReferenceFrame.orientnew方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_orientnew_respects_input_latexs

# 需要导入模块: from sympy.physics.vector import ReferenceFrame [as 别名]
# 或者: from sympy.physics.vector.ReferenceFrame import orientnew [as 别名]
def test_orientnew_respects_input_latexs():
    N = ReferenceFrame('N')
    q1 = dynamicsymbols('q1')
    A = N.orientnew('a', 'Axis', [q1, N.z])

    #build default and alternate latex_vecs:
    def_latex_vecs = [(r"\mathbf{\hat{%s}_%s}" % (A.name.lower(),
                      A.indices[0])), (r"\mathbf{\hat{%s}_%s}" %
                      (A.name.lower(), A.indices[1])),
                      (r"\mathbf{\hat{%s}_%s}" % (A.name.lower(),
                      A.indices[2]))]

    name = 'b'
    indices = [x+'1' for x in N.indices]
    new_latex_vecs = [(r"\mathbf{\hat{%s}_{%s}}" % (name.lower(),
                      indices[0])), (r"\mathbf{\hat{%s}_{%s}}" %
                      (name.lower(), indices[1])),
                      (r"\mathbf{\hat{%s}_{%s}}" % (name.lower(),
                      indices[2]))]

    B = N.orientnew(name, 'Axis', [q1, N.z], latexs=new_latex_vecs)

    assert A.latex_vecs == def_latex_vecs
    assert B.latex_vecs == new_latex_vecs
    assert B.indices != indices
开发者ID:asmeurer,项目名称:sympy,代码行数:27,代码来源:test_frame.py

示例2: test_dcm

# 需要导入模块: from sympy.physics.vector import ReferenceFrame [as 别名]
# 或者: from sympy.physics.vector.ReferenceFrame import orientnew [as 别名]
def test_dcm():
    q1, q2, q3, q4 = dynamicsymbols('q1 q2 q3 q4')
    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [q1, N.z])
    B = A.orientnew('B', 'Axis', [q2, A.x])
    C = B.orientnew('C', 'Axis', [q3, B.y])
    D = N.orientnew('D', 'Axis', [q4, N.y])
    E = N.orientnew('E', 'Space', [q1, q2, q3], '123')
    assert N.dcm(C) == Matrix([
        [- sin(q1) * sin(q2) * sin(q3) + cos(q1) * cos(q3), - sin(q1) *
        cos(q2), sin(q1) * sin(q2) * cos(q3) + sin(q3) * cos(q1)], [sin(q1) *
        cos(q3) + sin(q2) * sin(q3) * cos(q1), cos(q1) * cos(q2), sin(q1) *
            sin(q3) - sin(q2) * cos(q1) * cos(q3)], [- sin(q3) * cos(q2), sin(q2),
        cos(q2) * cos(q3)]])
    # This is a little touchy.  Is it ok to use simplify in assert?
    test_mat = D.dcm(C) - Matrix(
        [[cos(q1) * cos(q3) * cos(q4) - sin(q3) * (- sin(q4) * cos(q2) +
        sin(q1) * sin(q2) * cos(q4)), - sin(q2) * sin(q4) - sin(q1) *
            cos(q2) * cos(q4), sin(q3) * cos(q1) * cos(q4) + cos(q3) * (- sin(q4) *
        cos(q2) + sin(q1) * sin(q2) * cos(q4))], [sin(q1) * cos(q3) +
        sin(q2) * sin(q3) * cos(q1), cos(q1) * cos(q2), sin(q1) * sin(q3) -
            sin(q2) * cos(q1) * cos(q3)], [sin(q4) * cos(q1) * cos(q3) -
        sin(q3) * (cos(q2) * cos(q4) + sin(q1) * sin(q2) * sin(q4)), sin(q2) *
                cos(q4) - sin(q1) * sin(q4) * cos(q2), sin(q3) * sin(q4) * cos(q1) +
                cos(q3) * (cos(q2) * cos(q4) + sin(q1) * sin(q2) * sin(q4))]])
    assert test_mat.expand() == zeros(3, 3)
    assert E.dcm(N) == Matrix(
        [[cos(q2)*cos(q3), sin(q3)*cos(q2), -sin(q2)],
        [sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), sin(q1)*sin(q2)*sin(q3) +
        cos(q1)*cos(q3), sin(q1)*cos(q2)], [sin(q1)*sin(q3) +
        sin(q2)*cos(q1)*cos(q3), - sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1),
         cos(q1)*cos(q2)]])
开发者ID:jbm950,项目名称:sympy,代码行数:34,代码来源:test_frame.py

示例3: test_orientnew_respects_input_indices

# 需要导入模块: from sympy.physics.vector import ReferenceFrame [as 别名]
# 或者: from sympy.physics.vector.ReferenceFrame import orientnew [as 别名]
def test_orientnew_respects_input_indices():
    N = ReferenceFrame('N')
    q1 = dynamicsymbols('q1')
    A = N.orientnew('a', 'Axis', [q1, N.z])
    #modify default indices:
    minds = [x+'1' for x in N.indices]
    B = N.orientnew('b', 'Axis', [q1, N.z], indices=minds)

    assert N.indices == A.indices
    assert B.indices == minds
开发者ID:asmeurer,项目名称:sympy,代码行数:12,代码来源:test_frame.py

示例4: test_coordinate_vars

# 需要导入模块: from sympy.physics.vector import ReferenceFrame [as 别名]
# 或者: from sympy.physics.vector.ReferenceFrame import orientnew [as 别名]
def test_coordinate_vars():
    """Tests the coordinate variables functionality"""
    A = ReferenceFrame('A')
    assert CoordinateSym('Ax', A, 0) == A[0]
    assert CoordinateSym('Ax', A, 1) == A[1]
    assert CoordinateSym('Ax', A, 2) == A[2]
    raises(ValueError, lambda: CoordinateSym('Ax', A, 3))
    q = dynamicsymbols('q')
    qd = dynamicsymbols('q', 1)
    assert isinstance(A[0], CoordinateSym) and \
           isinstance(A[0], CoordinateSym) and \
           isinstance(A[0], CoordinateSym)
    assert A.variable_map(A) == {A[0]:A[0], A[1]:A[1], A[2]:A[2]}
    assert A[0].frame == A
    B = A.orientnew('B', 'Axis', [q, A.z])
    assert B.variable_map(A) == {B[2]: A[2], B[1]: -A[0]*sin(q) + A[1]*cos(q),
                                 B[0]: A[0]*cos(q) + A[1]*sin(q)}
    assert A.variable_map(B) == {A[0]: B[0]*cos(q) - B[1]*sin(q),
                                 A[1]: B[0]*sin(q) + B[1]*cos(q), A[2]: B[2]}
    assert time_derivative(B[0], A) == -A[0]*sin(q)*qd + A[1]*cos(q)*qd
    assert time_derivative(B[1], A) == -A[0]*cos(q)*qd - A[1]*sin(q)*qd
    assert time_derivative(B[2], A) == 0
    assert express(B[0], A, variables=True) == A[0]*cos(q) + A[1]*sin(q)
    assert express(B[1], A, variables=True) == -A[0]*sin(q) + A[1]*cos(q)
    assert express(B[2], A, variables=True) == A[2]
    assert time_derivative(A[0]*A.x + A[1]*A.y + A[2]*A.z, B) == A[1]*qd*A.x - A[0]*qd*A.y
    assert time_derivative(B[0]*B.x + B[1]*B.y + B[2]*B.z, A) == - B[1]*qd*B.x + B[0]*qd*B.y
    assert express(B[0]*B[1]*B[2], A, variables=True) == \
           A[2]*(-A[0]*sin(q) + A[1]*cos(q))*(A[0]*cos(q) + A[1]*sin(q))
    assert (time_derivative(B[0]*B[1]*B[2], A) -
            (A[2]*(-A[0]**2*cos(2*q) -
             2*A[0]*A[1]*sin(2*q) +
             A[1]**2*cos(2*q))*qd)).trigsimp() == 0
    assert express(B[0]*B.x + B[1]*B.y + B[2]*B.z, A) == \
           (B[0]*cos(q) - B[1]*sin(q))*A.x + (B[0]*sin(q) + \
           B[1]*cos(q))*A.y + B[2]*A.z
    assert express(B[0]*B.x + B[1]*B.y + B[2]*B.z, A, variables=True) == \
           A[0]*A.x + A[1]*A.y + A[2]*A.z
    assert express(A[0]*A.x + A[1]*A.y + A[2]*A.z, B) == \
           (A[0]*cos(q) + A[1]*sin(q))*B.x + \
           (-A[0]*sin(q) + A[1]*cos(q))*B.y + A[2]*B.z
    assert express(A[0]*A.x + A[1]*A.y + A[2]*A.z, B, variables=True) == \
           B[0]*B.x + B[1]*B.y + B[2]*B.z
    N = B.orientnew('N', 'Axis', [-q, B.z])
    assert N.variable_map(A) == {N[0]: A[0], N[2]: A[2], N[1]: A[1]}
    C = A.orientnew('C', 'Axis', [q, A.x + A.y + A.z])
    mapping = A.variable_map(C)
    assert mapping[A[0]] == 2*C[0]*cos(q)/3 + C[0]/3 - 2*C[1]*sin(q + pi/6)/3 +\
           C[1]/3 - 2*C[2]*cos(q + pi/3)/3 + C[2]/3
    assert mapping[A[1]] == -2*C[0]*cos(q + pi/3)/3 + \
           C[0]/3 + 2*C[1]*cos(q)/3 + C[1]/3 - 2*C[2]*sin(q + pi/6)/3 + C[2]/3
    assert mapping[A[2]] == -2*C[0]*sin(q + pi/6)/3 + C[0]/3 - \
           2*C[1]*cos(q + pi/3)/3 + C[1]/3 + 2*C[2]*cos(q)/3 + C[2]/3
开发者ID:asmeurer,项目名称:sympy,代码行数:55,代码来源:test_frame.py

示例5: test_orientnew_respects_input_variables

# 需要导入模块: from sympy.physics.vector import ReferenceFrame [as 别名]
# 或者: from sympy.physics.vector.ReferenceFrame import orientnew [as 别名]
def test_orientnew_respects_input_variables():
    N = ReferenceFrame('N')
    q1 = dynamicsymbols('q1')
    A = N.orientnew('a', 'Axis', [q1, N.z])

    #build non-standard variable names
    name = 'b'
    new_variables = ['notb_'+x+'1' for x in N.indices]
    B = N.orientnew(name, 'Axis', [q1, N.z], variables=new_variables)

    for j,var in enumerate(A.varlist):
        assert var.name == A.name + '_' + A.indices[j]

    for j,var in enumerate(B.varlist):
        assert var.name == new_variables[j]
开发者ID:asmeurer,项目名称:sympy,代码行数:17,代码来源:test_frame.py

示例6: test_partial_velocity

# 需要导入模块: from sympy.physics.vector import ReferenceFrame [as 别名]
# 或者: from sympy.physics.vector.ReferenceFrame import orientnew [as 别名]
def test_partial_velocity():
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    u4, u5 = dynamicsymbols('u4, u5')
    r = symbols('r')

    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    C = Point('C')
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

    vel_list = [Dmc.vel(N), C.vel(N), R.ang_vel_in(N)]
    u_list = [u1, u2, u3, u4, u5]
    assert (partial_velocity(vel_list, u_list, N) ==
            [[- r*L.y, r*L.x, 0, L.x, cos(q2)*L.y - sin(q2)*L.z],
            [0, 0, 0, L.x, cos(q2)*L.y - sin(q2)*L.z],
            [L.x, L.y, L.z, 0, 0]])

    # Make sure that partial velocities can be computed regardless if the
    # orientation between frames is defined or not.
    A = ReferenceFrame('A')
    B = ReferenceFrame('B')
    v = u4 * A.x + u5 * B.y
    assert partial_velocity((v, ), (u4, u5), A) == [[A.x, B.y]]

    raises(TypeError, lambda: partial_velocity(Dmc.vel(N), u_list, N))
    raises(TypeError, lambda: partial_velocity(vel_list, u1, N))
开发者ID:asmeurer,项目名称:sympy,代码行数:34,代码来源:test_functions.py

示例7: test_point_funcs

# 需要导入模块: from sympy.physics.vector import ReferenceFrame [as 别名]
# 或者: from sympy.physics.vector.ReferenceFrame import orientnew [as 别名]
def test_point_funcs():
    q, q2 = dynamicsymbols('q q2')
    qd, q2d = dynamicsymbols('q q2', 1)
    qdd, q2dd = dynamicsymbols('q q2', 2)
    N = ReferenceFrame('N')
    B = ReferenceFrame('B')
    B.set_ang_vel(N, 5 * B.y)
    O = Point('O')
    P = O.locatenew('P', q * B.x)
    assert P.pos_from(O) == q * B.x
    P.set_vel(B, qd * B.x + q2d * B.y)
    assert P.vel(B) == qd * B.x + q2d * B.y
    O.set_vel(N, 0)
    assert O.vel(N) == 0
    assert P.a1pt_theory(O, N, B) == ((-25 * q + qdd) * B.x + (q2dd) * B.y +
                               (-10 * qd) * B.z)

    B = N.orientnew('B', 'Axis', [q, N.z])
    O = Point('O')
    P = O.locatenew('P', 10 * B.x)
    O.set_vel(N, 5 * N.x)
    assert O.vel(N) == 5 * N.x
    assert P.a2pt_theory(O, N, B) == (-10 * qd**2) * B.x + (10 * qdd) * B.y

    B.set_ang_vel(N, 5 * B.y)
    O = Point('O')
    P = O.locatenew('P', q * B.x)
    P.set_vel(B, qd * B.x + q2d * B.y)
    O.set_vel(N, 0)
    assert P.v1pt_theory(O, N, B) == qd * B.x + q2d * B.y - 5 * q * B.z
开发者ID:AStorus,项目名称:sympy,代码行数:32,代码来源:test_point.py

示例8: test_point_funcs

# 需要导入模块: from sympy.physics.vector import ReferenceFrame [as 别名]
# 或者: from sympy.physics.vector.ReferenceFrame import orientnew [as 别名]
def test_point_funcs():
    q, q2 = dynamicsymbols("q q2")
    qd, q2d = dynamicsymbols("q q2", 1)
    qdd, q2dd = dynamicsymbols("q q2", 2)
    N = ReferenceFrame("N")
    B = ReferenceFrame("B")
    B.set_ang_vel(N, 5 * B.y)
    O = Point("O")
    P = O.locatenew("P", q * B.x)
    assert P.pos_from(O) == q * B.x
    P.set_vel(B, qd * B.x + q2d * B.y)
    assert P.vel(B) == qd * B.x + q2d * B.y
    O.set_vel(N, 0)
    assert O.vel(N) == 0
    assert P.a1pt_theory(O, N, B) == ((-25 * q + qdd) * B.x + (q2dd) * B.y + (-10 * qd) * B.z)

    B = N.orientnew("B", "Axis", [q, N.z])
    O = Point("O")
    P = O.locatenew("P", 10 * B.x)
    O.set_vel(N, 5 * N.x)
    assert O.vel(N) == 5 * N.x
    assert P.a2pt_theory(O, N, B) == (-10 * qd ** 2) * B.x + (10 * qdd) * B.y

    B.set_ang_vel(N, 5 * B.y)
    O = Point("O")
    P = O.locatenew("P", q * B.x)
    P.set_vel(B, qd * B.x + q2d * B.y)
    O.set_vel(N, 0)
    assert P.v1pt_theory(O, N, B) == qd * B.x + q2d * B.y - 5 * q * B.z
开发者ID:guanlongtianzi,项目名称:sympy,代码行数:31,代码来源:test_point.py

示例9: test_point_pos

# 需要导入模块: from sympy.physics.vector import ReferenceFrame [as 别名]
# 或者: from sympy.physics.vector.ReferenceFrame import orientnew [as 别名]
def test_point_pos():
    q = dynamicsymbols('q')
    N = ReferenceFrame('N')
    B = N.orientnew('B', 'Axis', [q, N.z])
    O = Point('O')
    P = O.locatenew('P', 10 * N.x + 5 * B.x)
    assert P.pos_from(O) == 10 * N.x + 5 * B.x
    Q = P.locatenew('Q', 10 * N.y + 5 * B.y)
    assert Q.pos_from(P) == 10 * N.y + 5 * B.y
    assert Q.pos_from(O) == 10 * N.x + 10 * N.y + 5 * B.x + 5 * B.y
    assert O.pos_from(Q) == -10 * N.x - 10 * N.y - 5 * B.x - 5 * B.y
开发者ID:AStorus,项目名称:sympy,代码行数:13,代码来源:test_point.py

示例10: test_point_a2pt_theorys

# 需要导入模块: from sympy.physics.vector import ReferenceFrame [as 别名]
# 或者: from sympy.physics.vector.ReferenceFrame import orientnew [as 别名]
def test_point_a2pt_theorys():
    q = dynamicsymbols('q')
    qd = dynamicsymbols('q', 1)
    qdd = dynamicsymbols('q', 2)
    N = ReferenceFrame('N')
    B = N.orientnew('B', 'Axis', [q, N.z])
    O = Point('O')
    P = O.locatenew('P', 0)
    O.set_vel(N, 0)
    assert P.a2pt_theory(O, N, B) == 0
    P.set_pos(O, B.x)
    assert P.a2pt_theory(O, N, B) == (-qd**2) * B.x + (qdd) * B.y
开发者ID:AStorus,项目名称:sympy,代码行数:14,代码来源:test_point.py

示例11: test_point_a2pt_theorys

# 需要导入模块: from sympy.physics.vector import ReferenceFrame [as 别名]
# 或者: from sympy.physics.vector.ReferenceFrame import orientnew [as 别名]
def test_point_a2pt_theorys():
    q = dynamicsymbols("q")
    qd = dynamicsymbols("q", 1)
    qdd = dynamicsymbols("q", 2)
    N = ReferenceFrame("N")
    B = N.orientnew("B", "Axis", [q, N.z])
    O = Point("O")
    P = O.locatenew("P", 0)
    O.set_vel(N, 0)
    assert P.a2pt_theory(O, N, B) == 0
    P.set_pos(O, B.x)
    assert P.a2pt_theory(O, N, B) == (-qd ** 2) * B.x + (qdd) * B.y
开发者ID:guanlongtianzi,项目名称:sympy,代码行数:14,代码来源:test_point.py

示例12: test_point_v2pt_theorys

# 需要导入模块: from sympy.physics.vector import ReferenceFrame [as 别名]
# 或者: from sympy.physics.vector.ReferenceFrame import orientnew [as 别名]
def test_point_v2pt_theorys():
    q = dynamicsymbols('q')
    qd = dynamicsymbols('q', 1)
    N = ReferenceFrame('N')
    B = N.orientnew('B', 'Axis', [q, N.z])
    O = Point('O')
    P = O.locatenew('P', 0)
    O.set_vel(N, 0)
    assert P.v2pt_theory(O, N, B) == 0
    P = O.locatenew('P', B.x)
    assert P.v2pt_theory(O, N, B) == (qd * B.z ^ B.x)
    O.set_vel(N, N.x)
    assert P.v2pt_theory(O, N, B) == N.x + qd * B.y
开发者ID:AStorus,项目名称:sympy,代码行数:15,代码来源:test_point.py

示例13: test_time_derivative

# 需要导入模块: from sympy.physics.vector import ReferenceFrame [as 别名]
# 或者: from sympy.physics.vector.ReferenceFrame import orientnew [as 别名]
def test_time_derivative():
    #The use of time_derivative for calculations pertaining to scalar
    #fields has been tested in test_coordinate_vars in test_essential.py
    A = ReferenceFrame('A')
    q = dynamicsymbols('q')
    qd = dynamicsymbols('q', 1)
    B = A.orientnew('B', 'Axis', [q, A.z])
    d = A.x | A.x
    assert time_derivative(d, B) == (-qd) * (A.y | A.x) + \
           (-qd) * (A.x | A.y)
    d1 = A.x | B.y
    assert time_derivative(d1, A) == - qd*(A.x|B.x)
    assert time_derivative(d1, B) == - qd*(A.y|B.y)
    d2 = A.x | B.x
    assert time_derivative(d2, A) == qd*(A.x|B.y)
    assert time_derivative(d2, B) == - qd*(A.y|B.x)
    d3 = A.x | B.z
    assert time_derivative(d3, A) == 0
    assert time_derivative(d3, B) == - qd*(A.y|B.z)
    q1, q2, q3, q4 = dynamicsymbols('q1 q2 q3 q4')
    q1d, q2d, q3d, q4d = dynamicsymbols('q1 q2 q3 q4', 1)
    q1dd, q2dd, q3dd, q4dd = dynamicsymbols('q1 q2 q3 q4', 2)
    C = B.orientnew('C', 'Axis', [q4, B.x])
    v1 = q1 * A.z
    v2 = q2*A.x + q3*B.y
    v3 = q1*A.x + q2*A.y + q3*A.z
    assert time_derivative(B.x, C) == 0
    assert time_derivative(B.y, C) == - q4d*B.z
    assert time_derivative(B.z, C) == q4d*B.y
    assert time_derivative(v1, B) == q1d*A.z
    assert time_derivative(v1, C) == - q1*sin(q)*q4d*A.x + \
           q1*cos(q)*q4d*A.y + q1d*A.z
    assert time_derivative(v2, A) == q2d*A.x - q3*qd*B.x + q3d*B.y
    assert time_derivative(v2, C) == q2d*A.x - q2*qd*A.y + \
           q2*sin(q)*q4d*A.z + q3d*B.y - q3*q4d*B.z
    assert time_derivative(v3, B) == (q2*qd + q1d)*A.x + \
           (-q1*qd + q2d)*A.y + q3d*A.z
    assert time_derivative(d, C) == - qd*(A.y|A.x) + \
           sin(q)*q4d*(A.z|A.x) - qd*(A.x|A.y) + sin(q)*q4d*(A.x|A.z)
    raises(ValueError, lambda: time_derivative(B.x, C, order=0.5))
    raises(ValueError, lambda: time_derivative(B.x, C, order=-1))
开发者ID:asmeurer,项目名称:sympy,代码行数:43,代码来源:test_functions.py

示例14: test_partial_velocity

# 需要导入模块: from sympy.physics.vector import ReferenceFrame [as 别名]
# 或者: from sympy.physics.vector.ReferenceFrame import orientnew [as 别名]
def test_partial_velocity():
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    u4, u5 = dynamicsymbols('u4, u5')
    r = symbols('r')

    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    C = Point('C')
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

    vel_list = [Dmc.vel(N), C.vel(N), R.ang_vel_in(N)]
    u_list = [u1, u2, u3, u4, u5]
    assert (partial_velocity(vel_list, u_list, N) ==
            [[- r*L.y, r*L.x, 0, L.x, cos(q2)*L.y - sin(q2)*L.z],
            [0, 0, 0, L.x, cos(q2)*L.y - sin(q2)*L.z],
            [L.x, L.y, L.z, 0, 0]])
开发者ID:A-turing-machine,项目名称:sympy,代码行数:24,代码来源:test_functions.py

示例15: dynamicsymbols

# 需要导入模块: from sympy.physics.vector import ReferenceFrame [as 别名]
# 或者: from sympy.physics.vector.ReferenceFrame import orientnew [as 别名]
from sympy import symbols, sin, cos

q = q1, q2, q3 = dynamicsymbols('q1:4') # x, y, theta
qd = q1d, q2d, q3d = dynamicsymbols('q1:4', 1)
t, g, m, l, w, f, v0 = symbols('t g m l w f v0')
Fx, Fy = symbols('Fx Fy')
values = {
    g: 9.81,
    m: 20,
    l: 2,
    w: 1,
    f: 2,
    v0: 20}

N = ReferenceFrame('N')
B = N.orientnew('B', 'axis', [q3, N.z])


O = Point('O')
S = O.locatenew('S', q1*N.x + q2*N.y)
S.set_vel(N, S.pos_from(O).dt(N))

#Is = m/12*(l**2 + w**2)
Is = symbols('Is')
I = inertia(B, 0, 0, Is, 0, 0, 0)
rb = RigidBody('rb', S, B, m, (I, S))
rb.set_potential_energy(0)


L = Lagrangian(N, rb)
lm = LagrangesMethod(
开发者ID:oliverlee,项目名称:advanced_dynamics,代码行数:33,代码来源:hw8.4.py


注:本文中的sympy.physics.vector.ReferenceFrame.orientnew方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。