当前位置: 首页>>代码示例>>Python>>正文


Python Density.doit方法代码示例

本文整理汇总了Python中sympy.physics.quantum.density.Density.doit方法的典型用法代码示例。如果您正苦于以下问题:Python Density.doit方法的具体用法?Python Density.doit怎么用?Python Density.doit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sympy.physics.quantum.density.Density的用法示例。


在下文中一共展示了Density.doit方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_doit

# 需要导入模块: from sympy.physics.quantum.density import Density [as 别名]
# 或者: from sympy.physics.quantum.density.Density import doit [as 别名]
def test_doit():
    x,y = symbols('x y')
    d = Density([XKet(),0.5], [PxKet(),0.5])
    assert (0.5*(PxKet()*Dagger(PxKet())) +
            0.5*(XKet()*Dagger(XKet()))) == d.doit()

    # check for kets with expr in them
    d_with_sym = Density([XKet(x*y),0.5], [PxKet(x*y),0.5])
    assert (0.5*(PxKet(x*y)*Dagger(PxKet(x*y))) +
            0.5*(XKet(x*y)*Dagger(XKet(x*y)))) == d_with_sym.doit()
开发者ID:piyushbansal,项目名称:sympy,代码行数:12,代码来源:test_density.py

示例2: test_eval_trace

# 需要导入模块: from sympy.physics.quantum.density import Density [as 别名]
# 或者: from sympy.physics.quantum.density.Density import doit [as 别名]
def test_eval_trace():
    up = JzKet(S(1)/2, S(1)/2)
    down = JzKet(S(1)/2, -S(1)/2)
    d = Density((up, 0.5), (down, 0.5))

    t = Tr(d)
    assert t.doit() == 1

    #test dummy time dependent states
    class TestTimeDepKet(TimeDepKet):
        def _eval_trace(self, bra, **options):
            return 1

    x, t = symbols('x t')
    k1 = TestTimeDepKet(0, 0.5)
    k2 = TestTimeDepKet(0, 1)
    d = Density([k1, 0.5], [k2, 0.5])
    assert d.doit() == (0.5 * OuterProduct(k1, k1.dual) +
                        0.5 * OuterProduct(k2, k2.dual))

    t = Tr(d)
    assert t.doit() == 1
开发者ID:AALEKH,项目名称:sympy,代码行数:24,代码来源:test_density.py

示例3: test_doit

# 需要导入模块: from sympy.physics.quantum.density import Density [as 别名]
# 或者: from sympy.physics.quantum.density.Density import doit [as 别名]
def test_doit():

    x, y = symbols('x y')
    A, B, C, D, E, F = symbols('A B C D E F', commutative=False)
    d = Density([XKet(), 0.5], [PxKet(), 0.5])
    assert (0.5*(PxKet()*Dagger(PxKet())) +
            0.5*(XKet()*Dagger(XKet()))) == d.doit()

    # check for kets with expr in them
    d_with_sym = Density([XKet(x*y), 0.5], [PxKet(x*y), 0.5])
    assert (0.5*(PxKet(x*y)*Dagger(PxKet(x*y))) +
            0.5*(XKet(x*y)*Dagger(XKet(x*y)))) == d_with_sym.doit()

    d = Density([(A + B)*C, 1.0])
    assert d.doit() == (1.0*A*C*Dagger(C)*Dagger(A) +
                        1.0*A*C*Dagger(C)*Dagger(B) +
                        1.0*B*C*Dagger(C)*Dagger(A) +
                        1.0*B*C*Dagger(C)*Dagger(B))

    #  With TensorProducts as args
    # Density with simple tensor products as args
    t = TensorProduct(A, B, C)
    d = Density([t, 1.0])
    assert d.doit() == \
        1.0 * TensorProduct(A*Dagger(A), B*Dagger(B), C*Dagger(C))

    # Density with multiple Tensorproducts as states
    t2 = TensorProduct(A, B)
    t3 = TensorProduct(C, D)

    d = Density([t2, 0.5], [t3, 0.5])
    assert d.doit() == (0.5 * TensorProduct(A*Dagger(A), B*Dagger(B)) +
                        0.5 * TensorProduct(C*Dagger(C), D*Dagger(D)))

    #Density with mixed states
    d = Density([t2 + t3, 1.0])
    assert d.doit() == (1.0 * TensorProduct(A*Dagger(A), B*Dagger(B)) +
                        1.0 * TensorProduct(A*Dagger(C), B*Dagger(D)) +
                        1.0 * TensorProduct(C*Dagger(A), D*Dagger(B)) +
                        1.0 * TensorProduct(C*Dagger(C), D*Dagger(D)))

    #Density operators with spin states
    tp1 = TensorProduct(JzKet(1, 1), JzKet(1, -1))
    d = Density([tp1, 1])

    # full trace
    t = Tr(d)
    assert t.doit() == 1

    #Partial trace on density operators with spin states
    t = Tr(d, [0])
    assert t.doit() == JzKet(1, -1) * Dagger(JzKet(1, -1))
    t = Tr(d, [1])
    assert t.doit() == JzKet(1, 1) * Dagger(JzKet(1, 1))

    # with another spin state
    tp2 = TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2))
    d = Density([tp2, 1])

    #full trace
    t = Tr(d)
    assert t.doit() == 1

    #Partial trace on density operators with spin states
    t = Tr(d, [0])
    assert t.doit() == JzKet(S(1)/2, -S(1)/2) * Dagger(JzKet(S(1)/2, -S(1)/2))
    t = Tr(d, [1])
    assert t.doit() == JzKet(S(1)/2, S(1)/2) * Dagger(JzKet(S(1)/2, S(1)/2))
开发者ID:AALEKH,项目名称:sympy,代码行数:70,代码来源:test_density.py


注:本文中的sympy.physics.quantum.density.Density.doit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。