本文整理汇总了Python中sympy.combinatorics.permutations.Permutation.rank_nonlex方法的典型用法代码示例。如果您正苦于以下问题:Python Permutation.rank_nonlex方法的具体用法?Python Permutation.rank_nonlex怎么用?Python Permutation.rank_nonlex使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy.combinatorics.permutations.Permutation
的用法示例。
在下文中一共展示了Permutation.rank_nonlex方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_ranking
# 需要导入模块: from sympy.combinatorics.permutations import Permutation [as 别名]
# 或者: from sympy.combinatorics.permutations.Permutation import rank_nonlex [as 别名]
def test_ranking():
assert Permutation.unrank_lex(5, 10).rank() == 10
p = Permutation.unrank_lex(15, 225)
assert p.rank() == 225
p1 = p.next_lex()
assert p1.rank() == 226
assert Permutation.unrank_lex(15, 225).rank() == 225
assert Permutation.unrank_lex(10, 0).is_Identity
p = Permutation.unrank_lex(4, 23)
assert p.rank() == 23
assert p.array_form == [3, 2, 1, 0]
assert p.next_lex() == None
p = Permutation([1, 5, 2, 0, 3, 6, 4])
q = Permutation([[1, 2, 3, 5, 6], [0, 4]])
a = [Permutation.unrank_trotterjohnson(4, i).array_form for i in range(5)]
assert a == [[0,1,2,3], [0,1,3,2], [0,3,1,2], [3,0,1,2], [3,0,2,1] ]
assert [Permutation(pa).rank_trotterjohnson() for pa in a] == range(5)
assert Permutation([0,1,2,3]).next_trotterjohnson() == \
Permutation([0,1,3,2])
assert q.rank_trotterjohnson() == 2283
assert p.rank_trotterjohnson() == 3389
p = Permutation([2, 5, 1, 6, 3, 0, 4])
q = Permutation([[6], [5], [0, 1, 2, 3, 4]])
assert p.rank() == 1964
assert q.rank() == 870
assert Permutation([]).rank_nonlex() == 0
prank = p.rank_nonlex()
assert prank == 1600
assert Permutation.unrank_nonlex(7, 1600) == p
qrank = q.rank_nonlex()
assert qrank == 41
assert Permutation.unrank_nonlex(7, 41) == Permutation(q.array_form)
a = [Permutation.unrank_nonlex(4, i).array_form for i in range(24)]
assert a == \
[[1, 2, 3, 0], [3, 2, 0, 1], [1, 3, 0, 2], [1, 2, 0, 3], [2, 3, 1, 0], \
[2, 0, 3, 1], [3, 0, 1, 2], [2, 0, 1, 3], [1, 3, 2, 0], [3, 0, 2, 1], \
[1, 0, 3, 2], [1, 0, 2, 3], [2, 1, 3, 0], [2, 3, 0, 1], [3, 1, 0, 2], \
[2, 1, 0, 3], [3, 2, 1, 0], [0, 2, 3, 1], [0, 3, 1, 2], [0, 2, 1, 3], \
[3, 1, 2, 0], [0, 3, 2, 1], [0, 1, 3, 2], [0, 1, 2, 3]]
assert Permutation([3, 2, 0, 1]).next_nonlex() == Permutation([1, 3, 0, 2])
assert [Permutation(pa).rank_nonlex() for pa in a] == range(24)
示例2: test_ranking
# 需要导入模块: from sympy.combinatorics.permutations import Permutation [as 别名]
# 或者: from sympy.combinatorics.permutations.Permutation import rank_nonlex [as 别名]
def test_ranking():
assert Permutation.unrank_lex(5, 10).rank() == 10
p = Permutation.unrank_lex(15, 225)
assert p.rank() == 225
p1 = p.next_lex()
assert p1.rank() == 226
assert Permutation.unrank_lex(15, 225).rank() == 225
assert Permutation.unrank_lex(10, 0).is_Identity
p = Permutation.unrank_lex(4, 23)
assert p.rank() == 23
assert p.array_form == [3, 2, 1, 0]
assert p.next_lex() is None
p = Permutation([1, 5, 2, 0, 3, 6, 4])
q = Permutation([[1, 2, 3, 5, 6], [0, 4]])
a = [Permutation.unrank_trotterjohnson(4, i).array_form for i in range(5)]
assert a == [[0, 1, 2, 3], [0, 1, 3, 2], [0, 3, 1, 2], [3, 0, 1,
2], [3, 0, 2, 1] ]
assert [Permutation(pa).rank_trotterjohnson() for pa in a] == range(5)
assert Permutation([0, 1, 2, 3]).next_trotterjohnson() == \
Permutation([0, 1, 3, 2])
assert q.rank_trotterjohnson() == 2283
assert p.rank_trotterjohnson() == 3389
assert Permutation([1, 0]).rank_trotterjohnson() == 1
a = Permutation(range(3))
b = a
l = []
tj = []
for i in range(6):
l.append(a)
tj.append(b)
a = a.next_lex()
b = b.next_trotterjohnson()
assert a == b is None
assert set([tuple(a) for a in l]) == set([tuple(a) for a in tj])
p = Permutation([2, 5, 1, 6, 3, 0, 4])
q = Permutation([[6], [5], [0, 1, 2, 3, 4]])
assert p.rank() == 1964
assert q.rank() == 870
assert Permutation([]).rank_nonlex() == 0
prank = p.rank_nonlex()
assert prank == 1600
assert Permutation.unrank_nonlex(7, 1600) == p
qrank = q.rank_nonlex()
assert qrank == 41
assert Permutation.unrank_nonlex(7, 41) == Permutation(q.array_form)
a = [Permutation.unrank_nonlex(4, i).array_form for i in range(24)]
assert a == [
[1, 2, 3, 0], [3, 2, 0, 1], [1, 3, 0, 2], [1, 2, 0, 3], [2, 3, 1, 0],
[2, 0, 3, 1], [3, 0, 1, 2], [2, 0, 1, 3], [1, 3, 2, 0], [3, 0, 2, 1],
[1, 0, 3, 2], [1, 0, 2, 3], [2, 1, 3, 0], [2, 3, 0, 1], [3, 1, 0, 2],
[2, 1, 0, 3], [3, 2, 1, 0], [0, 2, 3, 1], [0, 3, 1, 2], [0, 2, 1, 3],
[3, 1, 2, 0], [0, 3, 2, 1], [0, 1, 3, 2], [0, 1, 2, 3]]
ok = []
p = Permutation([1, 0])
for i in range(3):
ok.append(p.array_form)
p = p.next_nonlex()
if p is None:
ok.append(None)
break
assert ok == [[1, 0], [0, 1], None]
assert Permutation([3, 2, 0, 1]).next_nonlex() == Permutation([1, 3, 0, 2])
assert [Permutation(pa).rank_nonlex() for pa in a] == range(24)
示例3: test_Permutation
# 需要导入模块: from sympy.combinatorics.permutations import Permutation [as 别名]
# 或者: from sympy.combinatorics.permutations.Permutation import rank_nonlex [as 别名]
def test_Permutation():
p = Permutation([2,5,1,6,3,0,4])
q = Permutation([[1,4,5],[2,0,6],[3]])
assert q.cycles == 3
assert p*q == Permutation([4, 6, 1, 2, 5, 3, 0])
assert q*p == Permutation([6, 5, 3, 0, 2, 4, 1])
assert q.array_form == [3, 1, 4, 5, 0, 6, 2]
assert p.cyclic_form == [[3, 6, 4], [0, 2, 1, 5]]
assert p**13 == p
assert q**2 == Permutation([5, 1, 0, 6, 3, 2, 4])
assert p+q == Permutation([5, 6, 3, 1, 2, 4, 0])
assert q+p == p+q
assert p-q == Permutation([6, 3, 5, 1, 2, 4, 0])
assert q-p == Permutation([1, 4, 2, 6, 5, 3, 0])
a = p-q
b = q-p
assert (a+b).is_Identity
assert len(p.atoms()) == 7
assert q.atoms() == set([0, 1, 2, 3, 4, 5, 6])
assert p.inversion_vector == [2, 4, 1, 3, 1, 0]
assert q.inversion_vector == [3, 1, 2, 2, 0, 1]
assert Permutation.from_inversion_vector(p.inversion_vector) == p
assert Permutation.from_inversion_vector(q.inversion_vector).array_form\
== q.array_form
s = Permutation([0])
assert s.is_Singleton
r = Permutation([3,2,1,0])
assert (r**2).is_Identity
assert (p*(~p)).is_Identity
assert (~p)**13 == Permutation([5, 2, 0, 4, 6, 1, 3])
assert ~(r**2).is_Identity
assert p.max == 6
assert p.min == 0
q = Permutation([[4,1,2,3],[0,5,6]])
assert q.max == 4
assert q.min == 0
assert p.rank_nonlex() == 14830
assert q.rank_nonlex() == 8441
assert Permutation.unrank_nonlex(7, 41) == Permutation([4, 2, 3, 5, 1, 0, 6])
assert q.rank == 870
assert p.rank == 1964
p = Permutation([1,5,2,0,3,6,4])
q = Permutation([[2,3,5],[1,0,6],[4]])
assert p.ascents == [0, 3, 4]
assert q.ascents == [1, 2, 4]
assert r.ascents == []
assert p.descents == [1, 2, 5]
assert q.descents == [0, 3, 5]
assert Permutation(r.descents).is_Identity
assert p.inversions == 7
assert p.signature == -1
assert q.inversions == 11
assert q.signature == -1
assert (p*(~p)).inversions == 0
assert (p*(~p)).signature == 1
assert p.order == 6
assert q.order == 3
assert (p**(p.order)).is_Identity
assert p.length == 6
assert q.length == 7
assert r.length == 4
assert not p.is_Positive
assert p.is_Negative
assert not q.is_Positive
assert q.is_Negative
assert r.is_Positive
assert not r.is_Negative
assert p.runs() == [[1, 5], [2], [0, 3, 6], [4]]
assert q.runs() == [[4], [2, 3, 5], [0, 6], [1]]
assert r.runs() == [[3], [2], [1], [0]]
assert p.index == 8
assert q.index == 8
assert r.index == 3
#.........这里部分代码省略.........
示例4: test_Permutation
# 需要导入模块: from sympy.combinatorics.permutations import Permutation [as 别名]
# 或者: from sympy.combinatorics.permutations.Permutation import rank_nonlex [as 别名]
def test_Permutation():
p = Permutation([2, 5, 1, 6, 3, 0, 4])
q = Permutation([[1], [0, 3, 5, 6, 2, 4]])
assert Permutation(p.cyclic_form).array_form == p.array_form
assert p.cardinality == 5040
assert q.cardinality == 5040
assert q.cycles == 2
assert q*p == Permutation([4, 6, 1, 2, 5, 3, 0])
assert p*q == Permutation([6, 5, 3, 0, 2, 4, 1])
assert (Permutation([[1,2,3],[0,4]])*Permutation([[1,2,4],[0],[3]])).cyclic_form == \
[[1, 3], [0, 4, 2]]
assert q.array_form == [3, 1, 4, 5, 0, 6, 2]
assert p.cyclic_form == [[3, 6, 4], [0, 2, 1, 5]]
assert p**13 == p
assert q**2 == Permutation([5, 1, 0, 6, 3, 2, 4])
assert p+q == Permutation([5, 6, 3, 1, 2, 4, 0])
assert q+p == p+q
assert p-q == Permutation([6, 3, 5, 1, 2, 4, 0])
assert q-p == Permutation([1, 4, 2, 6, 5, 3, 0])
a = p-q
b = q-p
assert (a+b).is_Identity
assert len(p.atoms()) == 7
assert q.atoms() == set([0, 1, 2, 3, 4, 5, 6])
assert p.inversion_vector() == [2, 4, 1, 3, 1, 0]
assert q.inversion_vector() == [3, 1, 2, 2, 0, 1]
assert Permutation.from_inversion_vector(p.inversion_vector()) == p
assert Permutation.from_inversion_vector(q.inversion_vector()).array_form\
== q.array_form
assert Permutation([0, 4, 1, 3, 2]).parity() == 0
assert Permutation([0, 1, 4, 3, 2]).parity() == 1
s = Permutation([0])
assert s.is_Singleton
r = Permutation([3, 2, 1, 0])
assert (r**2).is_Identity
assert (p*(~p)).is_Identity
assert (~p)**13 == Permutation([5, 2, 0, 4, 6, 1, 3])
assert ~(r**2).is_Identity
assert p.max() == 6
assert p.min() == 0
q = Permutation([[6], [5], [0, 1, 2, 3, 4]])
assert q.max() == 4
assert q.min() == 0
assert Permutation([]).rank_nonlex() == 0
prank = p.rank_nonlex()
assert prank == 1600
assert Permutation.unrank_nonlex(7, 1600) == p
qrank = q.rank_nonlex()
assert qrank == 41
assert Permutation.unrank_nonlex(7, 41) == Permutation(q.array_form)
a = [Permutation.unrank_nonlex(4, i).array_form for i in range(24)]
assert a == \
[[1, 2, 3, 0], [3, 2, 0, 1], [1, 3, 0, 2], [1, 2, 0, 3], [2, 3, 1, 0], \
[2, 0, 3, 1], [3, 0, 1, 2], [2, 0, 1, 3], [1, 3, 2, 0], [3, 0, 2, 1], \
[1, 0, 3, 2], [1, 0, 2, 3], [2, 1, 3, 0], [2, 3, 0, 1], [3, 1, 0, 2], \
[2, 1, 0, 3], [3, 2, 1, 0], [0, 2, 3, 1], [0, 3, 1, 2], [0, 2, 1, 3], \
[3, 1, 2, 0], [0, 3, 2, 1], [0, 1, 3, 2], [0, 1, 2, 3]]
assert [Permutation(pa).rank_nonlex() for pa in a] == range(24)
assert q.rank() == 870
assert p.rank() == 1964
p = Permutation([1, 5, 2, 0, 3, 6, 4])
q = Permutation([[1, 2, 3, 5, 6], [0, 4]])
assert p.ascents() == [0, 3, 4]
assert q.ascents() == [1, 2, 4]
assert r.ascents() == []
assert p.descents() == [1, 2, 5]
assert q.descents() == [0, 3, 5]
assert Permutation(r.descents()).is_Identity
assert p.inversions() == 7
assert p.signature() == -1
assert q.inversions() == 11
assert q.signature() == -1
assert (p*(~p)).inversions() == 0
assert (p*(~p)).signature() == 1
assert p.order() == 6
assert q.order() == 10
#.........这里部分代码省略.........