当前位置: 首页>>代码示例>>Python>>正文


Python Permutation.conjugate方法代码示例

本文整理汇总了Python中sympy.combinatorics.permutations.Permutation.conjugate方法的典型用法代码示例。如果您正苦于以下问题:Python Permutation.conjugate方法的具体用法?Python Permutation.conjugate怎么用?Python Permutation.conjugate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sympy.combinatorics.permutations.Permutation的用法示例。


在下文中一共展示了Permutation.conjugate方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_Permutation

# 需要导入模块: from sympy.combinatorics.permutations import Permutation [as 别名]
# 或者: from sympy.combinatorics.permutations.Permutation import conjugate [as 别名]
def test_Permutation():
    p = Permutation([2, 5, 1, 6, 3, 0, 4])
    q = Permutation([[1], [0, 3, 5, 6, 2, 4]])

    assert Permutation(p.cyclic_form).array_form == p.array_form
    assert p.cardinality == 5040
    assert q.cardinality == 5040
    assert q.cycles == 2
    assert q*p == Permutation([4, 6, 1, 2, 5, 3, 0])
    assert p*q == Permutation([6, 5, 3, 0, 2, 4, 1])
    assert perm_af_mul([2, 5, 1, 6, 3, 0, 4], [3, 1, 4, 5, 0, 6, 2]) == \
        [6, 5, 3, 0, 2, 4, 1]

    assert cyclic([(2,3,5)], 5) == [[1, 2, 4], [0], [3]]
    assert (Permutation([[1,2,3],[0,4]])*Permutation([[1,2,4],[0],[3]])).cyclic_form == \
        [[1, 3], [0, 4, 2]]
    assert q.array_form == [3, 1, 4, 5, 0, 6, 2]
    assert p.cyclic_form == [[3, 6, 4], [0, 2, 1, 5]]
    assert p.transpositions() == [(3, 4), (3, 6), (0, 5), (0, 1), (0, 2)]

    assert p**13 == p
    assert q**2 == Permutation([5, 1, 0, 6, 3, 2, 4])

    assert p+q == Permutation([5, 6, 3, 1, 2, 4, 0])
    assert q+p == p+q

    assert p-q == Permutation([6, 3, 5, 1, 2, 4, 0])
    assert q-p == Permutation([1, 4, 2, 6, 5, 3, 0])

    a = p-q
    b = q-p
    assert (a+b).is_Identity

    assert p.conjugate(q) == Permutation([5, 3, 0, 4, 6, 2, 1])
    assert p.conjugate(q) == ~q*p*q == p**q
    assert q.conjugate(p) == Permutation([6, 3, 2, 0, 1, 4, 5])
    assert q.conjugate(p) == ~p*q*p == q**p

    assert p.commutator(q) == Permutation([1, 4, 5, 6, 3, 0, 2])
    assert q.commutator(p) == Permutation([5, 0, 6, 4, 1, 2, 3])
    assert p.commutator(q) == ~ q.commutator(p)

    assert len(p.atoms()) == 7
    assert q.atoms() == set([0, 1, 2, 3, 4, 5, 6])

    assert p.inversion_vector() == [2, 4, 1, 3, 1, 0]
    assert q.inversion_vector() == [3, 1, 2, 2, 0, 1]

    assert Permutation.from_inversion_vector(p.inversion_vector()) == p
    assert Permutation.from_inversion_vector(q.inversion_vector()).array_form\
           == q.array_form
    assert Permutation([i for i in range(500,-1,-1)]).inversions() == 125250

    assert Permutation([0, 4, 1, 3, 2]).parity() == 0
    assert Permutation([0, 1, 4, 3, 2]).parity() == 1
    assert perm_af_parity([0, 4, 1, 3, 2]) == 0
    assert perm_af_parity([0, 1, 4, 3, 2]) == 1

    s = Permutation([0])

    assert s.is_Singleton

    r = Permutation([3, 2, 1, 0])
    assert (r**2).is_Identity

    assert (p*(~p)).is_Identity
    assert (~p)**13 == Permutation([5, 2, 0, 4, 6, 1, 3])
    assert ~(r**2).is_Identity
    assert p.max() == 6
    assert p.min() == 0

    q = Permutation([[6], [5], [0, 1, 2, 3, 4]])

    assert q.max() == 4
    assert q.min() == 0

    p = Permutation([1, 5, 2, 0, 3, 6, 4])
    q = Permutation([[1, 2, 3, 5, 6], [0, 4]])

    assert p.ascents() == [0, 3, 4]
    assert q.ascents() == [1, 2, 4]
    assert r.ascents() == []

    assert p.descents() == [1, 2, 5]
    assert q.descents() == [0, 3, 5]
    assert Permutation(r.descents()).is_Identity

    assert p.inversions() == 7
    assert p.signature() == -1
    assert q.inversions() == 11
    assert q.signature() == -1
    assert (p*(~p)).inversions() == 0
    assert (p*(~p)).signature() == 1

    assert p.order() == 6
    assert q.order() == 10
    assert (p**(p.order())).is_Identity

    assert p.length() == 6
    assert q.length() == 7
#.........这里部分代码省略.........
开发者ID:StefenYin,项目名称:sympy,代码行数:103,代码来源:test_permutations.py


注:本文中的sympy.combinatorics.permutations.Permutation.conjugate方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。