本文整理汇总了Python中sympy.Interval类的典型用法代码示例。如果您正苦于以下问题:Python Interval类的具体用法?Python Interval怎么用?Python Interval使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Interval类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_union
def test_union():
assert Union(Interval(1, 2), Interval(2, 3)) == Interval(1, 3)
assert Union(Interval(1, 2), Interval(2, 3, True)) == Interval(1, 3)
assert Union(Interval(1, 3), Interval(2, 4)) == Interval(1, 4)
assert Union(Interval(1, 2), Interval(1, 3)) == Interval(1, 3)
assert Union(Interval(1, 3), Interval(1, 2)) == Interval(1, 3)
assert Union(Interval(1, 3, False, True), Interval(1, 2)) == \
Interval(1, 3, False, True)
assert Union(Interval(1, 3), Interval(1, 2, False, True)) == Interval(1, 3)
assert Union(Interval(1, 2, True), Interval(1, 3)) == Interval(1, 3)
assert Union(Interval(1, 2, True), Interval(1, 3, True)) == \
Interval(1, 3, True)
assert Union(Interval(1, 2, True), Interval(1, 3, True, True)) == \
Interval(1, 3, True, True)
assert Union(Interval(1, 2, True, True), Interval(1, 3, True)) == \
Interval(1, 3, True)
assert Union(Interval(1, 3), Interval(2, 3)) == Interval(1, 3)
assert Union(Interval(1, 3, False, True), Interval(2, 3)) == \
Interval(1, 3)
assert Union(Interval(1, 2, False, True), Interval(2, 3, True)) != \
Interval(1, 3)
assert Union(Interval(1, 2), S.EmptySet) == Interval(1, 2)
assert Union(S.EmptySet) == S.EmptySet
assert Union(Interval(0, 1), [FiniteSet(1.0/n) for n in range(1, 10)]) == \
Interval(0, 1)
assert Interval(1, 2).union(Interval(2, 3)) == \
Interval(1, 2) + Interval(2, 3)
assert Interval(1, 2).union(Interval(2, 3)) == Interval(1, 3)
assert Union(Set()) == Set()
assert FiniteSet(1) + FiniteSet(2) + FiniteSet(3) == FiniteSet(1, 2, 3)
assert FiniteSet('ham') + FiniteSet('eggs') == FiniteSet('ham', 'eggs')
assert FiniteSet(1, 2, 3) + S.EmptySet == FiniteSet(1, 2, 3)
assert FiniteSet(1, 2, 3) & FiniteSet(2, 3, 4) == FiniteSet(2, 3)
assert FiniteSet(1, 2, 3) | FiniteSet(2, 3, 4) == FiniteSet(1, 2, 3, 4)
x = Symbol("x")
y = Symbol("y")
z = Symbol("z")
assert S.EmptySet | FiniteSet(x, FiniteSet(y, z)) == \
FiniteSet(x, FiniteSet(y, z))
# Test that Intervals and FiniteSets play nicely
assert Interval(1, 3) + FiniteSet(2) == Interval(1, 3)
assert Interval(1, 3, True, True) + FiniteSet(3) == \
Interval(1, 3, True, False)
X = Interval(1, 3) + FiniteSet(5)
Y = Interval(1, 2) + FiniteSet(3)
XandY = X.intersect(Y)
assert 2 in X and 3 in X and 3 in XandY
assert XandY.is_subset(X) and XandY.is_subset(Y)
raises(TypeError, lambda: Union(1, 2, 3))
assert X.is_iterable is False
示例2: test_measure
def test_measure():
a = Symbol('a', real=True)
assert Interval(1, 3).measure == 2
assert Interval(0, a).measure == a
assert Interval(1, a).measure == a - 1
assert Union(Interval(1, 2), Interval(3, 4)).measure == 2
assert Union(Interval(1, 2), Interval(3, 4), FiniteSet(5, 6, 7)).measure \
== 2
assert FiniteSet(1, 2, oo, a, -oo, -5).measure == 0
assert S.EmptySet.measure == 0
square = Interval(0, 10) * Interval(0, 10)
offsetsquare = Interval(5, 15) * Interval(5, 15)
band = Interval(-oo, oo) * Interval(2, 4)
assert square.measure == offsetsquare.measure == 100
assert (square + offsetsquare).measure == 175 # there is some overlap
assert (square - offsetsquare).measure == 75
assert (square * FiniteSet(1, 2, 3)).measure == 0
assert (square.intersect(band)).measure == 20
assert (square + band).measure == oo
assert (band * FiniteSet(1, 2, 3)).measure == nan
示例3: find_curve_range_intersection
def find_curve_range_intersection(curve_1, curve_2, cut_at_inflection=False):
"""
Return intersections of x- and y-ranges of two real curves,
which are parametric curves on the xy-plane given as
(x_array, y_array), a tuple of NumPy arrays.
"""
x1, y1 = curve_1
x2, y2 = curve_2
if cut_at_inflection is True:
x1_min, x1_max = sorted([x1[0], x1[-1]])
x2_min, x2_max = sorted([x2[0], x2[-1]])
y1_min, y1_may = sorted([y1[0], y1[-1]])
y2_min, y2_may = sorted([y2[0], y2[-1]])
else:
x1_min, x1_max = numpy.sort(x1)[[0, -1]]
x2_min, x2_max = numpy.sort(x2)[[0, -1]]
y1_min, y1_may = numpy.sort(y1)[[0, -1]]
y2_min, y2_may = numpy.sort(y2)[[0, -1]]
x1_interval = Interval(x1_min, x1_max)
x2_interval = Interval(x2_min, x2_max)
y1_interval = Interval(y1_min, y1_may)
y2_interval = Interval(y2_min, y2_may)
x_range = x1_interval.intersect(x2_interval)
y_range = y1_interval.intersect(y2_interval)
return (x_range, y_range)
示例4: test_complement
def test_complement():
assert Interval(0, 1).complement == \
Union(Interval(-oo, 0, True, True), Interval(1, oo, True, True))
assert Interval(0, 1, True, False).complement == \
Union(Interval(-oo, 0, True, False), Interval(1, oo, True, True))
assert Interval(0, 1, False, True).complement == \
Union(Interval(-oo, 0, True, True), Interval(1, oo, False, True))
assert Interval(0, 1, True, True).complement == \
Union(Interval(-oo, 0, True, False), Interval(1, oo, False, True))
assert -S.EmptySet == S.EmptySet.complement
assert ~S.EmptySet == S.EmptySet.complement
assert S.EmptySet.complement == Interval(-oo, oo)
assert Union(Interval(0, 1), Interval(2, 3)).complement == \
Union(Interval(-oo, 0, True, True), Interval(1, 2, True, True),
Interval(3, oo, True, True))
assert FiniteSet(0).complement == Union(Interval(-oo,0, True,True) ,
Interval(0,oo, True, True))
assert (FiniteSet(5) + Interval(S.NegativeInfinity, 0)).complement == \
Interval(0, 5, True, True) + Interval(5, S.Infinity, True,True)
assert FiniteSet(1,2,3).complement == Interval(S.NegativeInfinity,1, True,True) + Interval(1,2, True,True) + Interval(2,3, True,True) + Interval(3,S.Infinity, True,True)
X = Interval(1,3)+FiniteSet(5)
assert X.intersect(X.complement) == S.EmptySet
示例5: test_interval_symbolic
def test_interval_symbolic():
x = Symbol('x')
e = Interval(0, 1)
assert e.contains(x) == And(0 <= x, x <= 1)
raises(TypeError, lambda: x in e)
e = Interval(0, 1, True, True)
assert e.contains(x) == And(0 < x, x < 1)
示例6: test_issue_10285
def test_issue_10285():
assert FiniteSet(-x - 1).intersect(Interval.Ropen(1, 2)) == FiniteSet(x).intersect(Interval.Lopen(-3, -2))
eq = -x - 2 * (-x - y)
s = signsimp(eq)
ivl = Interval.open(0, 1)
assert FiniteSet(eq).intersect(ivl) == FiniteSet(s).intersect(ivl)
assert FiniteSet(-eq).intersect(ivl) == FiniteSet(s).intersect(Interval.open(-1, 0))
eq -= 1
ivl = Interval.Lopen(1, oo)
assert FiniteSet(eq).intersect(ivl) == FiniteSet(s).intersect(Interval.Lopen(2, oo))
示例7: test_reduce_rational_inequalities_real_relational
def test_reduce_rational_inequalities_real_relational():
assert reduce_rational_inequalities([], x) == False
assert reduce_rational_inequalities(
[[(x**2 + 3*x + 2)/(x**2 - 16) >= 0]], x, relational=False) == \
Union(Interval.open(-oo, -4), Interval(-2, -1), Interval.open(4, oo))
assert reduce_rational_inequalities(
[[((-2*x - 10)*(3 - x))/((x**2 + 5)*(x - 2)**2) < 0]], x,
relational=False) == \
Union(Interval.open(-5, 2), Interval.open(2, 3))
assert reduce_rational_inequalities([[(x + 1)/(x - 5) <= 0]], x,
relational=False) == \
Interval.Ropen(-1, 5)
assert reduce_rational_inequalities([[(x**2 + 4*x + 3)/(x - 1) > 0]], x,
relational=False) == \
Union(Interval.open(-3, -1), Interval.open(1, oo))
assert reduce_rational_inequalities([[(x**2 - 16)/(x - 1)**2 < 0]], x,
relational=False) == \
Union(Interval.open(-4, 1), Interval.open(1, 4))
assert reduce_rational_inequalities([[(3*x + 1)/(x + 4) >= 1]], x,
relational=False) == \
Union(Interval.open(-oo, -4), Interval.Ropen(S(3)/2, oo))
assert reduce_rational_inequalities([[(x - 8)/x <= 3 - x]], x,
relational=False) == \
Union(Interval.Lopen(-oo, -2), Interval.Lopen(0, 4))
# issue sympy/sympy#10237
assert reduce_rational_inequalities(
[[x < oo, x >= 0, -oo < x]], x, relational=False) == Interval(0, oo)
示例8: test_union
def test_union():
assert Union(Interval(1, 2), Interval(2, 3)) == Interval(1, 3)
assert Union(Interval(1, 2), Interval(2, 3, True)) == Interval(1, 3)
assert Union(Interval(1, 3), Interval(2, 4)) == Interval(1, 4)
assert Union(Interval(1, 2), Interval(1, 3)) == Interval(1, 3)
assert Union(Interval(1, 3), Interval(1, 2)) == Interval(1, 3)
assert Union(Interval(1, 3, False, True), Interval(1, 2)) == \
Interval(1, 3, False, True)
assert Union(Interval(1, 3), Interval(1, 2, False, True)) == Interval(1, 3)
assert Union(Interval(1, 2, True), Interval(1, 3)) == Interval(1, 3)
assert Union(Interval(1, 2, True), Interval(1, 3, True)) == Interval(1, 3, True)
assert Union(Interval(1, 2, True), Interval(1, 3, True, True)) == \
Interval(1, 3, True, True)
assert Union(Interval(1, 2, True, True), Interval(1, 3, True)) == \
Interval(1, 3, True)
assert Union(Interval(1, 3), Interval(2, 3)) == Interval(1, 3)
assert Union(Interval(1, 3, False, True), Interval(2, 3)) == \
Interval(1, 3)
assert Union(Interval(1, 2, False, True), Interval(2, 3, True)) != \
Interval(1, 3)
assert Union(Interval(1, 2), S.EmptySet) == Interval(1, 2)
assert Union(S.EmptySet) == S.EmptySet
assert Union(Interval(0,1), [FiniteSet(1.0/n) for n in range(1,10)]) == \
Interval(0,1)
assert Interval(1, 2).union(Interval(2, 3)) == \
Interval(1, 2) + Interval(2, 3)
assert Interval(1, 2).union(Interval(2, 3)) == Interval(1, 3)
assert Union(Set()) == Set()
assert FiniteSet(1) + FiniteSet(2) + FiniteSet(3) == FiniteSet(1,2,3)
assert FiniteSet(['ham']) + FiniteSet(['eggs']) == FiniteSet('ham', 'eggs')
assert FiniteSet(1,2,3) + S.EmptySet == FiniteSet(1,2,3)
assert FiniteSet(1,2,3) & FiniteSet(2,3,4) == FiniteSet(2,3)
assert FiniteSet(1,2,3) | FiniteSet(2,3,4) == FiniteSet(1,2,3,4)
# Test that Intervals and FiniteSets play nicely
assert Interval(1,3) + FiniteSet(2) == Interval(1,3)
assert Interval(1,3, True,True) + FiniteSet(3) == Interval(1,3, True,False)
X = Interval(1,3)+FiniteSet(5)
Y = Interval(1,2)+FiniteSet(3)
XandY = X.intersect(Y)
assert 2 in X and 3 in X and 3 in XandY
assert X.subset(XandY) and Y.subset(XandY)
raises(TypeError, "Union(1, 2, 3)")
示例9: WordInterval
class WordInterval(object):
SILENCE_WORD = '#'
def __init__(self, inf, sup, word):
self.word = word
self.interval = Interval(inf, sup)
@property
def is_silent(self):
return self.word == WordInterval.SILENCE_WORD
@property
def inf(self):
return self.interval.inf
@property
def sup(self):
return self.interval.sup
def intersect(self, another_interval):
return self.interval.intersect(another_interval)
def __eq__(self, other):
return (self.interval == other.interval) and (self.word == other.word)
def __str__(self):
return "%s -> %s" % (self.interval, self.word)
def __repr__(self):
return self.__str__()
示例10: test_complement
def test_complement():
assert Interval(0, 1).complement(S.Reals) == \
Union(Interval(-oo, 0, True, True), Interval(1, oo, True, True))
assert Interval(0, 1, True, False).complement(S.Reals) == \
Union(Interval(-oo, 0, True, False), Interval(1, oo, True, True))
assert Interval(0, 1, False, True).complement(S.Reals) == \
Union(Interval(-oo, 0, True, True), Interval(1, oo, False, True))
assert Interval(0, 1, True, True).complement(S.Reals) == \
Union(Interval(-oo, 0, True, False), Interval(1, oo, False, True))
assert S.UniversalSet.complement(S.EmptySet) == S.EmptySet
assert S.UniversalSet.complement(S.Reals) == S.EmptySet
assert S.UniversalSet.complement(S.UniversalSet) == S.EmptySet
assert S.EmptySet.complement(S.Reals) == S.Reals
assert Union(Interval(0, 1), Interval(2, 3)).complement(S.Reals) == \
Union(Interval(-oo, 0, True, True), Interval(1, 2, True, True),
Interval(3, oo, True, True))
assert FiniteSet(0).complement(S.Reals) == \
Union(Interval(-oo, 0, True, True), Interval(0, oo, True, True))
assert (FiniteSet(5) + Interval(S.NegativeInfinity,
0)).complement(S.Reals) == \
Interval(0, 5, True, True) + Interval(5, S.Infinity, True, True)
assert FiniteSet(1, 2, 3).complement(S.Reals) == \
Interval(S.NegativeInfinity, 1, True, True) + \
Interval(1, 2, True, True) + Interval(2, 3, True, True) +\
Interval(3, S.Infinity, True, True)
assert FiniteSet(x).complement(S.Reals) == Complement(S.Reals, FiniteSet(x))
assert FiniteSet(0, x).complement(S.Reals) == Complement(Interval(-oo, 0, True, True) +
Interval(0, oo, True, True)
,FiniteSet(x), evaluate=False)
square = Interval(0, 1) * Interval(0, 1)
notsquare = square.complement(S.Reals*S.Reals)
assert all(pt in square for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)])
assert not any(
pt in notsquare for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)])
assert not any(pt in square for pt in [(-1, 0), (1.5, .5), (10, 10)])
assert all(pt in notsquare for pt in [(-1, 0), (1.5, .5), (10, 10)])
示例11: test_solve_abs
def test_solve_abs():
assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
assert solveset_real(Abs(x + 3) - 2 * Abs(x - 3), x) == FiniteSet(1, 9)
assert solveset_real(2 * Abs(x) - Abs(x - 1), x) == FiniteSet(-1, Rational(1, 3))
assert solveset_real(Abs(x - 7) - 8, x) == FiniteSet(-S(1), S(15))
# issue 9565. Note: solveset_real does not solve this as it is
# solveset's job to handle Relationals
assert solveset(Abs((x - 1) / (x - 5)) <= S(1) / 3, domain=S.Reals) == Interval(-1, 2)
# issue #10069
eq = abs(1 / (x - 1)) - 1 > 0
u = Union(Interval.open(0, 1), Interval.open(1, 2))
assert solveset_real(eq, x) == u
assert solveset(eq, x, domain=S.Reals) == u
raises(ValueError, lambda: solveset(abs(x) - 1, x))
示例12: test_solve_abs
def test_solve_abs():
assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \
FiniteSet(1, 9)
assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \
FiniteSet(-1, Rational(1, 3))
assert solveset_real(Abs(x - 7) - 8, x) == FiniteSet(-S(1), S(15))
# issue 9565. Note: solveset_real does not solve this as it is
# solveset's job to handle Relationals
assert solveset(Abs((x - 1)/(x - 5)) <= S(1)/3, domain=S.Reals
) == Interval(-1, 2)
# issue #10069
assert solveset_real(abs(1/(x - 1)) - 1 > 0, x) == \
ConditionSet(x, Eq((1 - Abs(x - 1))/Abs(x - 1) > 0, 0),
S.Reals)
assert solveset(abs(1/(x - 1)) - 1 > 0, x, domain=S.Reals
) == Union(Interval.open(0, 1), Interval.open(1, 2))
示例13: test_complement
def test_complement():
assert Interval(0, 1).complement == \
Union(Interval(-oo, 0, True, True), Interval(1, oo, True, True))
assert Interval(0, 1, True, False).complement == \
Union(Interval(-oo, 0, True, False), Interval(1, oo, True, True))
assert Interval(0, 1, False, True).complement == \
Union(Interval(-oo, 0, True, True), Interval(1, oo, False, True))
assert Interval(0, 1, True, True).complement == \
Union(Interval(-oo, 0, True, False), Interval(1, oo, False, True))
assert -S.EmptySet == S.EmptySet.complement
assert ~S.EmptySet == S.EmptySet.complement
assert S.EmptySet.complement == S.UniversalSet
assert S.UniversalSet.complement == S.EmptySet
assert Union(Interval(0, 1), Interval(2, 3)).complement == \
Union(Interval(-oo, 0, True, True), Interval(1, 2, True, True),
Interval(3, oo, True, True))
assert FiniteSet(0).complement == Union(Interval(-oo, 0, True, True),
Interval(0, oo, True, True))
assert (FiniteSet(5) + Interval(S.NegativeInfinity, 0)).complement == \
Interval(0, 5, True, True) + Interval(5, S.Infinity, True, True)
assert FiniteSet(1, 2, 3).complement == \
Interval(S.NegativeInfinity, 1, True, True) + Interval(1, 2, True, True) + \
Interval(2, 3, True, True) + Interval(3, S.Infinity, True, True)
X = Interval(1, 3) + FiniteSet(5)
assert X.intersect(X.complement) == S.EmptySet
square = Interval(0, 1) * Interval(0, 1)
notsquare = square.complement
assert all(pt in square for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)])
assert not any(
pt in notsquare for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)])
assert not any(pt in square for pt in [(-1, 0), (1.5, .5), (10, 10)])
assert all(pt in notsquare for pt in [(-1, 0), (1.5, .5), (10, 10)])
示例14: create_ui_set
def create_ui_set(self, X):
result = None
nums = []
allowed = "-0123456789{},()[]o"
if not all(c in allowed for c in X):
return False
if len(X) < 3 and X != '{}':
return False
if (X[0] == '(' or X[0] == '[') and (X[-1] == ')' or X[-1] == ']'):
nums = re.findall("[-\d]+", X)
if '-' in nums:
nums.remove('-')
if len(nums) == 1:
if '-oo' in X or 'oo' in X:
if '-oo' in X:
nums.append(nums[0])
nums[0] = -oo
elif 'oo' in X:
nums.append(oo)
else:
return False
if len(nums) != 2:
return False
commata = re.findall(",", X)
if len(commata) != 1:
return False
for i in range(len(X)):
if X[i] == ',' and not (((X[i-1].isdigit() or X[i+1].isdigit()) or (X[i-1] == 'o' or X[i+1] == 'o'))):
return False
left = True if X[0] == '(' else False
right = True if X[-1] == ')' else False
if oo in nums or -oo in nums:
if oo in nums:
result = Interval(int(nums[0]), oo, left, right)
return result
else:
result = Interval(-oo, int(nums[1]), left, right)
return result
else:
if nums[0] <= nums[1]:
result = Interval(int(nums[0]), int(nums[1]), left, right)
return result
else:
return False
elif X[0] == '{' and X[-1] == '}':
if len(X) == 2:
return EmptySet()
else:
nums = re.findall("[-\d]+", X)
if len(re.findall(",", X)) != len(nums)-1:
return False
num_count = 0
for i in range(len(nums)):
if X[i] == ',' and not X.index(nums[num_count]) < i and X[i+1] == ',':
return False
num_count += 1
result = FiniteSet()
for i in range(len(nums)):
result = result.union(FiniteSet(int(nums[i])))
return result
else:
return False
示例15: generate_interval
def generate_interval(self, A, OP):
if OP == '\setminus':
if len(A.interval) == 1:
self.interval_rep = 1
self.val1 = choice([A.val_lst[0], -oo, oo])
if self.val1 == -oo or self.val1 == oo:
self.val2 = A.val_lst[0]
else:
self.val2 = choice([-oo, oo])
else:
self.interval_rep = 0
self.val1 = choice(A.val_lst)
self.val2 = self.val1
self.left_border = choice([True, False])
self.left_border = choice([True, False])
elif OP == '\cap':
self.interval_rep = 0
if len(A.val_lst) == 1:
if randint(0, 1) == 0:
self.val1 = randint(-25, A.val_lst[0])
self.val2 = A.val_lst[0] + randint(0, 2)
else:
self.val1 = A.val_lst[-1]-randint(0, 2)
self.val2 = randint(A.val_lst[-1], 25)
else:
if randint(0, 1) == 0:
self.val1 = randint(-25, A.val_lst[1])
self.val2 = A.val_lst[1] + randint(0, 2)
else:
self.val1 = A.val_lst[-1] - randint(0, 2)
self.val2 = randint(A.val_lst[-1], 25)
else:
self.interval_rep = 2
tmp_lst = [-5, -4, -3, -2, -1, 1, 2, 3, 4, 5]
tmp_lst.extend(A.val_lst)
for i in range(0, randint(1, 5)):
self.val_lst.append(choice(tmp_lst))
if self.interval_rep == 0:
self.interval = Interval(self.val1, self.val2, self.left_border, self.right_border)
self.set_str += "\{r \ | \ r \in \mathbb{R} \wedge \ "+str(self.val1)
self.set_str += '<' if self.left_border == True else '\leq'
self.set_str += ' \ r'
self.set_str += '<' if self.right_border == True else '\leq'
self.set_str += str(self.val2)
self.set_str += '\}'
if isinstance(self.interval, EmptySet):
self.interval = FiniteSet(self.val1)
self.set_str = '\{'+str(self.val1)+'\}'
elif self.interval_rep == 1:
self.interval = Interval(self.val1, self.val2, self.left_border, self.right_border)
self.set_str += "\{r \ | \ r \in \mathbb{R} \wedge \ r"
if self.val1 == -oo or self.val1 == oo:
if self.val1 == -oo:
self.set_str += '<' if self.left_border == True else '\leq'
else:
self.set_str += '>' if self.left_border == True else '\geq'
#if self.val1 == oo:
# self.set_str += '<' if self.left_border == True else '\leq'
#else:
# self.set_str += '>' if self.left_border == True else '\geq'
self.set_str += str(self.val2)+'\}'
else:
if self.val2 == -oo:
self.set_str += '<' if self.left_border == True else '\leq'
else:
self.set_str += '>' if self.left_border == True else '\geq'
#if self.val2 == oo:
# self.set_str += '<' if self.left_border == True else '\leq'
#else:
# self.set_str += '>' if self.left_border == True else '\geq'
self.set_str += str(self.val1)+'\}'
else:
for i in range(len(self.val_lst)):
self.interval = self.interval.union(FiniteSet(self.val_lst[i]))
self.set_str = '\{'+str(self.interval)+'\}'