当前位置: 首页>>代码示例>>Python>>正文


Python ClassifierChain.predict方法代码示例

本文整理汇总了Python中sklearn.multioutput.ClassifierChain.predict方法的典型用法代码示例。如果您正苦于以下问题:Python ClassifierChain.predict方法的具体用法?Python ClassifierChain.predict怎么用?Python ClassifierChain.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.multioutput.ClassifierChain的用法示例。


在下文中一共展示了ClassifierChain.predict方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_classifier_chain_fit_and_predict_with_sparse_data

# 需要导入模块: from sklearn.multioutput import ClassifierChain [as 别名]
# 或者: from sklearn.multioutput.ClassifierChain import predict [as 别名]
def test_classifier_chain_fit_and_predict_with_sparse_data():
    # Fit classifier chain with sparse data
    X, Y = generate_multilabel_dataset_with_correlations()
    X_sparse = sp.csr_matrix(X)

    classifier_chain = ClassifierChain(LogisticRegression())
    classifier_chain.fit(X_sparse, Y)
    Y_pred_sparse = classifier_chain.predict(X_sparse)

    classifier_chain = ClassifierChain(LogisticRegression())
    classifier_chain.fit(X, Y)
    Y_pred_dense = classifier_chain.predict(X)

    assert_array_equal(Y_pred_sparse, Y_pred_dense)
开发者ID:maniteja123,项目名称:scikit-learn,代码行数:16,代码来源:test_multioutput.py

示例2: test_classifier_chain_vs_independent_models

# 需要导入模块: from sklearn.multioutput import ClassifierChain [as 别名]
# 或者: from sklearn.multioutput.ClassifierChain import predict [as 别名]
def test_classifier_chain_vs_independent_models():
    # Verify that an ensemble of classifier chains (each of length
    # N) can achieve a higher Jaccard similarity score than N independent
    # models
    yeast = fetch_mldata('yeast')
    X = yeast['data']
    Y = yeast['target'].transpose().toarray()
    X_train = X[:2000, :]
    X_test = X[2000:, :]
    Y_train = Y[:2000, :]
    Y_test = Y[2000:, :]

    ovr = OneVsRestClassifier(LogisticRegression())
    ovr.fit(X_train, Y_train)
    Y_pred_ovr = ovr.predict(X_test)

    chain = ClassifierChain(LogisticRegression(),
                            order=np.array([0, 2, 4, 6, 8, 10,
                                            12, 1, 3, 5, 7, 9,
                                            11, 13]))
    chain.fit(X_train, Y_train)
    Y_pred_chain = chain.predict(X_test)

    assert_greater(jaccard_similarity_score(Y_test, Y_pred_chain),
                   jaccard_similarity_score(Y_test, Y_pred_ovr))
开发者ID:fabionukui,项目名称:scikit-learn,代码行数:27,代码来源:test_multioutput.py

示例3: test_classifier_chain_fit_and_predict_with_sparse_data_and_cv

# 需要导入模块: from sklearn.multioutput import ClassifierChain [as 别名]
# 或者: from sklearn.multioutput.ClassifierChain import predict [as 别名]
def test_classifier_chain_fit_and_predict_with_sparse_data_and_cv():
    # Fit classifier chain with sparse data cross_val_predict
    X, Y = generate_multilabel_dataset_with_correlations()
    X_sparse = sp.csr_matrix(X)
    classifier_chain = ClassifierChain(LogisticRegression(), cv=3)
    classifier_chain.fit(X_sparse, Y)
    Y_pred = classifier_chain.predict(X_sparse)
    assert_equal(Y_pred.shape, Y.shape)
开发者ID:fabionukui,项目名称:scikit-learn,代码行数:10,代码来源:test_multioutput.py

示例4: test_classifier_chain_crossval_fit_and_predict

# 需要导入模块: from sklearn.multioutput import ClassifierChain [as 别名]
# 或者: from sklearn.multioutput.ClassifierChain import predict [as 别名]
def test_classifier_chain_crossval_fit_and_predict():
    # Fit classifier chain with cross_val_predict and verify predict
    # performance
    X, Y = generate_multilabel_dataset_with_correlations()
    classifier_chain_cv = ClassifierChain(LogisticRegression(), cv=3)
    classifier_chain_cv.fit(X, Y)

    classifier_chain = ClassifierChain(LogisticRegression())
    classifier_chain.fit(X, Y)

    Y_pred_cv = classifier_chain_cv.predict(X)
    Y_pred = classifier_chain.predict(X)

    assert_equal(Y_pred_cv.shape, Y.shape)
    assert_greater(jaccard_similarity_score(Y, Y_pred_cv), 0.4)

    assert_not_equal(jaccard_similarity_score(Y, Y_pred_cv),
                     jaccard_similarity_score(Y, Y_pred))
开发者ID:fabionukui,项目名称:scikit-learn,代码行数:20,代码来源:test_multioutput.py

示例5: test_classifier_chain_random_order

# 需要导入模块: from sklearn.multioutput import ClassifierChain [as 别名]
# 或者: from sklearn.multioutput.ClassifierChain import predict [as 别名]
def test_classifier_chain_random_order():
    # Fit classifier chain with random order
    X, Y = generate_multilabel_dataset_with_correlations()
    classifier_chain_random = ClassifierChain(LogisticRegression(),
                                              order='random',
                                              random_state=42)
    classifier_chain_random.fit(X, Y)
    Y_pred_random = classifier_chain_random.predict(X)

    assert_not_equal(list(classifier_chain_random.order), list(range(4)))
    assert_equal(len(classifier_chain_random.order_), 4)
    assert_equal(len(set(classifier_chain_random.order_)), 4)

    classifier_chain_fixed = \
        ClassifierChain(LogisticRegression(),
                        order=classifier_chain_random.order_)
    classifier_chain_fixed.fit(X, Y)
    Y_pred_fixed = classifier_chain_fixed.predict(X)

    # Randomly ordered chain should behave identically to a fixed order chain
    # with the same order.
    assert_array_equal(Y_pred_random, Y_pred_fixed)
开发者ID:fabionukui,项目名称:scikit-learn,代码行数:24,代码来源:test_multioutput.py

示例6: test_classifier_chain_fit_and_predict_with_linear_svc

# 需要导入模块: from sklearn.multioutput import ClassifierChain [as 别名]
# 或者: from sklearn.multioutput.ClassifierChain import predict [as 别名]
def test_classifier_chain_fit_and_predict_with_linear_svc():
    # Fit classifier chain and verify predict performance using LinearSVC
    X, Y = generate_multilabel_dataset_with_correlations()
    classifier_chain = ClassifierChain(LinearSVC())
    classifier_chain.fit(X, Y)

    Y_pred = classifier_chain.predict(X)
    assert_equal(Y_pred.shape, Y.shape)

    Y_decision = classifier_chain.decision_function(X)

    Y_binary = (Y_decision >= 0)
    assert_array_equal(Y_binary, Y_pred)
    assert not hasattr(classifier_chain, 'predict_proba')
开发者ID:maniteja123,项目名称:scikit-learn,代码行数:16,代码来源:test_multioutput.py

示例7: test_classifier_chain_fit_and_predict_with_logistic_regression

# 需要导入模块: from sklearn.multioutput import ClassifierChain [as 别名]
# 或者: from sklearn.multioutput.ClassifierChain import predict [as 别名]
def test_classifier_chain_fit_and_predict_with_logistic_regression():
    # Fit classifier chain and verify predict performance
    X, Y = generate_multilabel_dataset_with_correlations()
    classifier_chain = ClassifierChain(LogisticRegression())
    classifier_chain.fit(X, Y)

    Y_pred = classifier_chain.predict(X)
    assert_equal(Y_pred.shape, Y.shape)

    Y_prob = classifier_chain.predict_proba(X)
    Y_binary = (Y_prob >= .5)
    assert_array_equal(Y_binary, Y_pred)

    assert_equal([c.coef_.size for c in classifier_chain.estimators_],
                 list(range(X.shape[1], X.shape[1] + Y.shape[1])))
开发者ID:fabionukui,项目名称:scikit-learn,代码行数:17,代码来源:test_multioutput.py

示例8: test_classifier_chain_vs_independent_models

# 需要导入模块: from sklearn.multioutput import ClassifierChain [as 别名]
# 或者: from sklearn.multioutput.ClassifierChain import predict [as 别名]
def test_classifier_chain_vs_independent_models():
    # Verify that an ensemble of classifier chains (each of length
    # N) can achieve a higher Jaccard similarity score than N independent
    # models
    X, Y = generate_multilabel_dataset_with_correlations()
    X_train = X[:600, :]
    X_test = X[600:, :]
    Y_train = Y[:600, :]
    Y_test = Y[600:, :]

    ovr = OneVsRestClassifier(LogisticRegression())
    ovr.fit(X_train, Y_train)
    Y_pred_ovr = ovr.predict(X_test)

    chain = ClassifierChain(LogisticRegression())
    chain.fit(X_train, Y_train)
    Y_pred_chain = chain.predict(X_test)

    assert_greater(jaccard_similarity_score(Y_test, Y_pred_chain),
                   jaccard_similarity_score(Y_test, Y_pred_ovr))
开发者ID:maniteja123,项目名称:scikit-learn,代码行数:22,代码来源:test_multioutput.py


注:本文中的sklearn.multioutput.ClassifierChain.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。