当前位置: 首页>>代码示例>>Python>>正文


Python OneVsOneClassifier.fit方法代码示例

本文整理汇总了Python中sklearn.multiclass.OneVsOneClassifier.fit方法的典型用法代码示例。如果您正苦于以下问题:Python OneVsOneClassifier.fit方法的具体用法?Python OneVsOneClassifier.fit怎么用?Python OneVsOneClassifier.fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.multiclass.OneVsOneClassifier的用法示例。


在下文中一共展示了OneVsOneClassifier.fit方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: svm_training

# 需要导入模块: from sklearn.multiclass import OneVsOneClassifier [as 别名]
# 或者: from sklearn.multiclass.OneVsOneClassifier import fit [as 别名]
def svm_training(train_X,train_Y,kernel):
	if kernel == False:
		clf = OneVsOneClassifier(svm.LinearSVC(random_state=0))
	else:
		clf = OneVsOneClassifier(svm.SVC(kernel='rbf'))
	clf.fit(train_X,train_Y)
	return clf
开发者ID:akhilbatra898,项目名称:SentimentAnalysisOfTwitter,代码行数:9,代码来源:unigramSVM.py

示例2: test_ovo_partial_fit_predict

# 需要导入模块: from sklearn.multiclass import OneVsOneClassifier [as 别名]
# 或者: from sklearn.multiclass.OneVsOneClassifier import fit [as 别名]
def test_ovo_partial_fit_predict():
    X, y = shuffle(iris.data, iris.target)
    ovo1 = OneVsOneClassifier(MultinomialNB())
    ovo1.partial_fit(X[:100], y[:100], np.unique(y))
    ovo1.partial_fit(X[100:], y[100:])
    pred1 = ovo1.predict(X)

    ovo2 = OneVsOneClassifier(MultinomialNB())
    ovo2.fit(X, y)
    pred2 = ovo2.predict(X)
    assert_equal(len(ovo1.estimators_), n_classes * (n_classes - 1) / 2)
    assert_greater(np.mean(y == pred1), 0.65)
    assert_almost_equal(pred1, pred2)

    # Test when mini-batches don't have all target classes
    ovo1 = OneVsOneClassifier(MultinomialNB())
    ovo1.partial_fit(iris.data[:60], iris.target[:60], np.unique(iris.target))
    ovo1.partial_fit(iris.data[60:], iris.target[60:])
    pred1 = ovo1.predict(iris.data)
    ovo2 = OneVsOneClassifier(MultinomialNB())
    pred2 = ovo2.fit(iris.data, iris.target).predict(iris.data)

    assert_almost_equal(pred1, pred2)
    assert_equal(len(ovo1.estimators_), len(np.unique(iris.target)))
    assert_greater(np.mean(iris.target == pred1), 0.65)
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:27,代码来源:test_multiclass.py

示例3: gen_svc

# 需要导入模块: from sklearn.multiclass import OneVsOneClassifier [as 别名]
# 或者: from sklearn.multiclass.OneVsOneClassifier import fit [as 别名]
def gen_svc(train_model):
    '''Given a training model, generates the SVM (and DictVectorizer) for it

    Args: 
        train_model: a training model object. should have 2 attributes:
        feature_lists, a map from POS tag to a dictionary of features
        (the ones used in the ith decision), and action_lists, a map from
        POS tag to the action (Shift, Left, Right) chosen for the ith decision
    Returns: dictionary mapping POS tag to a vectorizer, SVM tuple
    Raises: None
    '''
    models = {}
    for pos_tag in train_model.feature_lists:
        vec = DictVectorizer()
        feature_mat = vec.fit_transform(train_model.feature_lists[pos_tag])
        trained_svc = OneVsOneClassifier(LinearSVC())
        try:
            trained_svc.fit(feature_mat, np.array(train_model.action_lists[pos_tag]))
        except ValueError:
            # occasionally we get the same action for everything with a
            # particular POS, which raises an error. so in that case we just
            # use a custom class that always predicts the same action
            trained_svc = AlwaysPredict(train_model.feature_lists[pos_tag][0])
        models[pos_tag] = (vec, trained_svc)
    return models
开发者ID:lurke,项目名称:DependencyParsing,代码行数:27,代码来源:master.py

示例4: train_classifier

# 需要导入模块: from sklearn.multiclass import OneVsOneClassifier [as 别名]
# 或者: from sklearn.multiclass.OneVsOneClassifier import fit [as 别名]
def train_classifier(clf,X_train,y_train,X_test,y_test):
	clf = OneVsOneClassifier(clf)
	clf.fit(X_train, y_train)
	train_time = time() - t0
	print("train time: %0.3fs" % train_time)
	t0 = time()
	return clf
开发者ID:AvinashKalivarapu,项目名称:SentimentAnalysisOfTwitter,代码行数:9,代码来源:svm_classifier.py

示例5: test_ovo_fit_on_list

# 需要导入模块: from sklearn.multiclass import OneVsOneClassifier [as 别名]
# 或者: from sklearn.multiclass.OneVsOneClassifier import fit [as 别名]
def test_ovo_fit_on_list():
    # Test that OneVsOne fitting works with a list of targets and yields the
    # same output as predict from an array
    ovo = OneVsOneClassifier(LinearSVC(random_state=0))
    prediction_from_array = ovo.fit(iris.data, iris.target).predict(iris.data)
    prediction_from_list = ovo.fit(iris.data,
                                   list(iris.target)).predict(iris.data)
    assert_array_equal(prediction_from_array, prediction_from_list)
开发者ID:Anuragch,项目名称:scikit-learn,代码行数:10,代码来源:test_multiclass.py

示例6: test_ovo_string_y

# 需要导入模块: from sklearn.multiclass import OneVsOneClassifier [as 别名]
# 或者: from sklearn.multiclass.OneVsOneClassifier import fit [as 别名]
def test_ovo_string_y():
    # Test that the OvO doesn't mess up the encoding of string labels
    X = np.eye(4)
    y = np.array(['a', 'b', 'c', 'd'])

    ovo = OneVsOneClassifier(LinearSVC())
    ovo.fit(X, y)
    assert_array_equal(y, ovo.predict(X))
开发者ID:Anuragch,项目名称:scikit-learn,代码行数:10,代码来源:test_multiclass.py

示例7: gen_svc

# 需要导入模块: from sklearn.multiclass import OneVsOneClassifier [as 别名]
# 或者: from sklearn.multiclass.OneVsOneClassifier import fit [as 别名]
def gen_svc(train_model):
    '''Given a training model, generates the SVM (and DictVectorizer) for it'''
    vec = DictVectorizer()
    feature_mat = vec.fit_transform(train_model.feature_list)
    # for some reason just SVC() seems to always suggest "Shift"
    trained_svc = OneVsOneClassifier(LinearSVC())
    trained_svc.fit(feature_mat, np.array(train_model.action_list))
    return vec, trained_svc
开发者ID:lurke,项目名称:DependencyParsing,代码行数:10,代码来源:nate.py

示例8: test_ovo_string_y

# 需要导入模块: from sklearn.multiclass import OneVsOneClassifier [as 别名]
# 或者: from sklearn.multiclass.OneVsOneClassifier import fit [as 别名]
def test_ovo_string_y():
    "Test that the OvO doesn't screw the encoding of string labels"
    X = np.eye(4)
    y = np.array(['a', 'b', 'c', 'd'])

    svc = LinearSVC()
    ovo = OneVsOneClassifier(svc)
    ovo.fit(X, y)
    assert_array_equal(y, ovo.predict(X))
开发者ID:jaguila,项目名称:cert,代码行数:11,代码来源:test_multiclass.py

示例9: test_ovo_fit_predict

# 需要导入模块: from sklearn.multiclass import OneVsOneClassifier [as 别名]
# 或者: from sklearn.multiclass.OneVsOneClassifier import fit [as 别名]
def test_ovo_fit_predict():
    # A classifier which implements decision_function.
    ovo = OneVsOneClassifier(LinearSVC(random_state=0))
    ovo.fit(iris.data, iris.target).predict(iris.data)
    assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2)

    # A classifier which implements predict_proba.
    ovo = OneVsOneClassifier(MultinomialNB())
    ovo.fit(iris.data, iris.target).predict(iris.data)
    assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2)
开发者ID:jaguila,项目名称:cert,代码行数:12,代码来源:test_multiclass.py

示例10: OneVsOne

# 需要导入模块: from sklearn.multiclass import OneVsOneClassifier [as 别名]
# 或者: from sklearn.multiclass.OneVsOneClassifier import fit [as 别名]
def OneVsOne(inputs_train, inputs_valid, target_train, target_valid):
	name = "Multiclass One Vs One"
	clf = OneVsOneClassifier(LinearSVC(random_state=0))
	clf.fit(inputs_train, np.ravel(target_train))
	prediction = clf.predict(inputs_valid)
	correct = np.count_nonzero(np.ravel(target_valid) == prediction)
	total = target_valid.shape[0]
	correctRate = (float(correct)/total)*100

	return name, correctRate
开发者ID:Nivekul,项目名称:facialexpressionprediction,代码行数:12,代码来源:ovo.py

示例11: svm

# 需要导入模块: from sklearn.multiclass import OneVsOneClassifier [as 别名]
# 或者: from sklearn.multiclass.OneVsOneClassifier import fit [as 别名]
def svm(X,Y):
    X_train = np.array([x for i, x in enumerate(X) if i % 7 != 0], dtype = np.uint8)
    y_train = np.array([z for i, z in enumerate(Y) if i % 7 != 0], dtype = np.uint8)
    X_test  = np.array([x for i, x in enumerate(X) if i % 10 == 0], dtype = np.uint8)
    y_test  = np.array([z for i, z in enumerate(Y) if i % 10 == 0], dtype = np.uint8)

    clf = OneVsOneClassifier(LinearSVC(random_state=0))
    clf.fit(X_train, y_train)
    y_predicted = rf.predict(X_test)

    results = [prediction == truth for prediction, truth in zip(y_predicted, y_test)]
    accuracy = float(results.count(True)) / float(len(results))
    print accuracy
开发者ID:Aphaniteja,项目名称:Computational-Sustainability,代码行数:15,代码来源:svm.py

示例12: test_pairwise_indices

# 需要导入模块: from sklearn.multiclass import OneVsOneClassifier [as 别名]
# 或者: from sklearn.multiclass.OneVsOneClassifier import fit [as 别名]
def test_pairwise_indices():
    clf_precomputed = svm.SVC(kernel="precomputed")
    X, y = iris.data, iris.target

    ovr_false = OneVsOneClassifier(clf_precomputed)
    linear_kernel = np.dot(X, X.T)
    ovr_false.fit(linear_kernel, y)

    n_estimators = len(ovr_false.estimators_)
    precomputed_indices = ovr_false.pairwise_indices_

    for idx in precomputed_indices:
        assert_equal(idx.shape[0] * n_estimators / (n_estimators - 1), linear_kernel.shape[0])
开发者ID:dsquareindia,项目名称:scikit-learn,代码行数:15,代码来源:test_multiclass.py

示例13: test_ovo_partial_fit_predict

# 需要导入模块: from sklearn.multiclass import OneVsOneClassifier [as 别名]
# 或者: from sklearn.multiclass.OneVsOneClassifier import fit [as 别名]
def test_ovo_partial_fit_predict():
    temp = datasets.load_iris()
    X, y = temp.data, temp.target
    ovo1 = OneVsOneClassifier(MultinomialNB())
    ovo1.partial_fit(X[:100], y[:100], np.unique(y))
    ovo1.partial_fit(X[100:], y[100:])
    pred1 = ovo1.predict(X)

    ovo2 = OneVsOneClassifier(MultinomialNB())
    ovo2.fit(X, y)
    pred2 = ovo2.predict(X)
    assert_equal(len(ovo1.estimators_), n_classes * (n_classes - 1) / 2)
    assert_greater(np.mean(y == pred1), 0.65)
    assert_almost_equal(pred1, pred2)

    # Test when mini-batches have binary target classes
    ovo1 = OneVsOneClassifier(MultinomialNB())
    ovo1.partial_fit(X[:60], y[:60], np.unique(y))
    ovo1.partial_fit(X[60:], y[60:])
    pred1 = ovo1.predict(X)
    ovo2 = OneVsOneClassifier(MultinomialNB())
    pred2 = ovo2.fit(X, y).predict(X)

    assert_almost_equal(pred1, pred2)
    assert_equal(len(ovo1.estimators_), len(np.unique(y)))
    assert_greater(np.mean(y == pred1), 0.65)

    ovo = OneVsOneClassifier(MultinomialNB())
    X = np.random.rand(14, 2)
    y = [1, 1, 2, 3, 3, 0, 0, 4, 4, 4, 4, 4, 2, 2]
    ovo.partial_fit(X[:7], y[:7], [0, 1, 2, 3, 4])
    ovo.partial_fit(X[7:], y[7:])
    pred = ovo.predict(X)
    ovo2 = OneVsOneClassifier(MultinomialNB())
    pred2 = ovo2.fit(X, y).predict(X)
    assert_almost_equal(pred, pred2)

    # raises error when mini-batch does not have classes from all_classes
    ovo = OneVsOneClassifier(MultinomialNB())
    error_y = [0, 1, 2, 3, 4, 5, 2]
    message_re = escape("Mini-batch contains {0} while "
                        "it must be subset of {1}".format(np.unique(error_y),
                                                          np.unique(y)))
    assert_raises_regexp(ValueError, message_re, ovo.partial_fit, X[:7],
                         error_y, np.unique(y))

    # test partial_fit only exists if estimator has it:
    ovr = OneVsOneClassifier(SVC())
    assert_false(hasattr(ovr, "partial_fit"))
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:51,代码来源:test_multiclass.py

示例14: test_ovo_ties

# 需要导入模块: from sklearn.multiclass import OneVsOneClassifier [as 别名]
# 或者: from sklearn.multiclass.OneVsOneClassifier import fit [as 别名]
def test_ovo_ties():
    # test that ties are broken using the decision function, not defaulting to
    # the smallest label
    X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]])
    y = np.array([2, 0, 1, 2])
    multi_clf = OneVsOneClassifier(Perceptron())
    ovo_prediction = multi_clf.fit(X, y).predict(X)

    # recalculate votes to make sure we have a tie
    predictions = np.vstack([clf.predict(X) for clf in multi_clf.estimators_])
    scores = np.vstack([clf.decision_function(X)
                        for clf in multi_clf.estimators_])
    # classifiers are in order 0-1, 0-2, 1-2
    # aggregate votes:
    votes = np.zeros((4, 3))
    votes[np.arange(4), predictions[0]] += 1
    votes[np.arange(4), 2 * predictions[1]] += 1
    votes[np.arange(4), 1 + predictions[2]] += 1
    # for the first point, there is one vote per class
    assert_array_equal(votes[0, :], 1)
    # for the rest, there is no tie and the prediction is the argmax
    assert_array_equal(np.argmax(votes[1:], axis=1), ovo_prediction[1:])
    # for the tie, the prediction is the class with the highest score
    assert_equal(ovo_prediction[0], 0)
    # in the zero-one classifier, the score for 0 is greater than the score for
    # one.
    assert_greater(scores[0][0], scores[0][1])
    # score for one is greater than score for zero
    assert_greater(scores[2, 0] - scores[0, 0], scores[0, 0] + scores[1, 0])
    # score for one is greater than score for two
    assert_greater(scores[2, 0] - scores[0, 0], -scores[1, 0] - scores[2, 0])
开发者ID:jaguila,项目名称:cert,代码行数:33,代码来源:test_multiclass.py

示例15: svm_classification

# 需要导入模块: from sklearn.multiclass import OneVsOneClassifier [as 别名]
# 或者: from sklearn.multiclass.OneVsOneClassifier import fit [as 别名]
def svm_classification(genres, features_type):
	training_set_features = tf.read_features_from_files("../../music/training", genres, features_type)
	testing_set_features = tf.read_features_from_files("../../music/testing", genres, features_type)

	X = []
	y = []
	for feature in training_set_features:
		(mean, cov_mat, genre_name) = feature
		X.append(mean.tolist())
		y.append(tf.get_genre_ID(genre_name))

	training_data = np.array(X)
	training_class = np.array(y)

	X = []
	y = []
	for feature in testing_set_features:
		(mean, cov_mat, genre_name) = feature
		X.append(mean.tolist())
		y.append(tf.get_genre_ID(genre_name))

	testing_data = np.array(X)
	testing_class = np.array(y)


	clf = OneVsOneClassifier(SVC(kernel='linear'))
	result_class = np.array(clf.fit(training_data, training_class).predict(testing_data))

	rt.print_accuracy(list(testing_class), list(result_class), genres, features_type, "svm")
	rt.write_accuracy_to_file("../../music/", list(testing_class), list(result_class), genres, features_type, "svm")
开发者ID:vladimir-paramuzov,项目名称:MGC-Project,代码行数:32,代码来源:svc.py


注:本文中的sklearn.multiclass.OneVsOneClassifier.fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。