当前位置: 首页>>代码示例>>Python>>正文


Python GridSearchCV.predict方法代码示例

本文整理汇总了Python中sklearn.model_selection.GridSearchCV.predict方法的典型用法代码示例。如果您正苦于以下问题:Python GridSearchCV.predict方法的具体用法?Python GridSearchCV.predict怎么用?Python GridSearchCV.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.model_selection.GridSearchCV的用法示例。


在下文中一共展示了GridSearchCV.predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_grid_search_sparse_scoring

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import predict [as 别名]
def test_grid_search_sparse_scoring():
    X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)

    clf = LinearSVC()
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
    cv.fit(X_[:180], y_[:180])
    y_pred = cv.predict(X_[180:])
    C = cv.best_estimator_.C

    X_ = sp.csr_matrix(X_)
    clf = LinearSVC()
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
    cv.fit(X_[:180], y_[:180])
    y_pred2 = cv.predict(X_[180:])
    C2 = cv.best_estimator_.C

    assert_array_equal(y_pred, y_pred2)
    assert_equal(C, C2)
    # Smoke test the score
    # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]),
    #                            cv.score(X_[:180], y[:180]))

    # test loss where greater is worse
    def f1_loss(y_true_, y_pred_):
        return -f1_score(y_true_, y_pred_)
    F1Loss = make_scorer(f1_loss, greater_is_better=False)
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss)
    cv.fit(X_[:180], y_[:180])
    y_pred3 = cv.predict(X_[180:])
    C3 = cv.best_estimator_.C

    assert_equal(C, C3)
    assert_array_equal(y_pred, y_pred3)
开发者ID:YinongLong,项目名称:scikit-learn,代码行数:35,代码来源:test_search.py

示例2: model_select_rdf

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import predict [as 别名]
def model_select_rdf(dataset, cv=3, n_jobs=6):
    X_train, X_test, y_train, y_test = dataset

    w1 = sum(y_train)/len(y_train)
    w0 = 1 - w1
    sample_weight = np.array([w0 if x==0 else w1 for x in y_train])

    # Set the parameters by cross-validation
    params = dict(
        max_depth=[5, 20, None],
        n_estimators=[10, 30, 100],
        class_weight=['balanced_subsample', 'balanced'],
        # sample_weight=[sample_weight]
        max_features=[50, 300, None, 'auto'],
        min_samples_leaf=[1, 3]
    )

    scores = [
        # 'recall',
        'f1',
        # 'precision',
    ]

    for score in scores:
        print("# Tuning hyper-parameters for %s" % score)
        print()

        clf = GridSearchCV(
            RandomForestClassifier(),  
            param_grid=params,  # parameters to tune via cross validation
            refit=True,  # fit using all data, on the best detected classifier
            n_jobs=n_jobs,  # number of cores to use for parallelization; -1 for "all cores"
            scoring=score,  # what score are we optimizing?
            cv=cv,  # what type of cross validation to use
        )

        clf.fit(X_train, y_train)

        print("Best parameters set found on training set:")
        print()
        print(clf.best_params_)

        print("Detailed classification report:")
        print()
        print("Scores on training set.")
        y_true, y_pred = y_train, clf.predict(X_train)
        print(classification_report(y_true, y_pred))
        print()


        print("Scores on test set.")
        print()
        y_true, y_pred = y_test, clf.predict(X_test)
        print(classification_report(y_true, y_pred))
        print()

    return clf
开发者ID:pablocelayes,项目名称:sna_classifier,代码行数:59,代码来源:classifiers.py

示例3: model_select_svc2

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import predict [as 别名]
def model_select_svc2(dataset, cv=3, n_jobs=6):
    # Parameter grid es subconjunto de la de
    # model_select_svc, con kernel y gamma limitados
    # a los valores que siempre funcionaban mejor
    X_train, X_test, y_train, y_test = dataset

    # Set the parameters by cross-validation
    parameters = [
        {
         'kernel': ['rbf'],
         'gamma': [0.1],
         'C': [0.01, 0.1, 1],
         'class_weight': ['balanced', None]
        }
    ]

    scores = [
        # 'precision',
        # 'recall',
        'f1'
    ]

    for score in scores:
        print("# Tuning hyper-parameters for %s" % score)
        print()

        clf = GridSearchCV(
            SVC(),  
            param_grid=parameters,  # parameters to tune via cross validation
            refit=True,  # fit using all data, on the best detected classifier
            n_jobs=n_jobs,  # number of cores to use for parallelization; -1 for "all cores"
            scoring=score,  # what score are we optimizing?
            cv=cv,  # what type of cross validation to use
        )

        clf.fit(X_train, y_train)

        print("Best parameters set found on training set:")
        print()
        print(clf.best_params_)

        print("Detailed classification report:")
        print()
        print("Scores on training set.")
        y_true, y_pred = y_train, clf.predict(X_train)
        print(classification_report(y_true, y_pred))
        print()


        print("Scores on test set.")
        print()
        y_true, y_pred = y_test, clf.predict(X_test)
        print(classification_report(y_true, y_pred))
        print()

    return clf
开发者ID:pablocelayes,项目名称:sna_classifier,代码行数:58,代码来源:classifiers.py

示例4: model_select_sgd

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import predict [as 别名]
def model_select_sgd(dataset, cv=3, n_jobs=6):
    X_train, X_test, y_train, y_test = dataset

    # Set the parameters by cross-validation
    parameters = [
        {
            'alpha': (0.01, 0.001, 0.00001),
            'penalty': ('l1', 'l2', 'elasticnet'),
            'loss': ('hinge', 'log'),
            'n_iter': (10, 50, 80),
        }
    ]

    scores = [
        # 'precision',
        'recall',
        # 'f1'
    ]

    for score in scores:
        print("# Tuning hyper-parameters for %s" % score)
        print()

        clf = GridSearchCV(
            SGDClassifier(),  
            param_grid=parameters,  # parameters to tune via cross validation
            refit=True,  # fit using all data, on the best detected classifier
            n_jobs=n_jobs,  # number of cores to use for parallelization; -1 for "all cores"
            scoring=score,  # what score are we optimizing?
            cv=cv,  # what type of cross validation to use
        )

        clf.fit(X_train, y_train)

        print("Best parameters set found on training set:")
        print()
        print(clf.best_params_)

        print("Detailed classification report:")
        print()
        print("Scores on training set.")
        y_true, y_pred = y_train, clf.predict(X_train)
        print(classification_report(y_true, y_pred))
        print()


        print("Scores on test set.")
        print()
        y_true, y_pred = y_test, clf.predict(X_test)
        print(classification_report(y_true, y_pred))
        print()

    return clf
开发者ID:pablocelayes,项目名称:sna_classifier,代码行数:55,代码来源:classifiers.py

示例5: model_select_dtree

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import predict [as 别名]
def model_select_dtree(dataset):
    # Split the dataset in two equal parts
    X_train, X_test, y_train, y_test = dataset

    # Set the parameters by cross-validation
    params = {'max_depth':[5,10, None],
                'min_samples_split':[2,8,32],
                'min_samples_leaf':[1,5,10],
                # 'compute_importances':[True],
                # 'max_features': [25, 50, 75, 100, 150]
                # 'max_features': [5, 10, 15]
            }

    scores = [
        # 'precision',
        'recall',
        # 'f1'
    ]


    for score in scores:
        print("# Tuning hyper-parameters for %s" % score)
        print()

        clf = GridSearchCV(
            DecisionTreeClassifier(),  
            param_grid=params,  # parameters to tune via cross validation
            refit=True,  # fit using all data, on the best detected classifier
            n_jobs=-1,  # number of cores to use for parallelization; -1 for "all cores"
            scoring=score,  # what score are we optimizing?
            cv=StratifiedKFold(y_train, n_folds=3),  # what type of cross validation to use
        )

        clf.fit(X_train, y_train)

        print("Best parameters set found on training set:")
        print()
        print(clf.best_params_)

        print("Detailed classification report:")
        print()
        print("Scores on training set.")
        y_true, y_pred = y_train, clf.predict(X_train)
        print(classification_report(y_true, y_pred))
        print()


        print("Scores on test set.")
        print()
        y_true, y_pred = y_test, clf.predict(X_test)
        print(classification_report(y_true, y_pred))
        print()
开发者ID:pablocelayes,项目名称:sna_classifier,代码行数:54,代码来源:grid_dtrees.py

示例6: model_select_svc

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import predict [as 别名]
def model_select_svc(dataset):
    X_train, X_test, y_train, y_test = dataset

    # Set the parameters by cross-validation
    parameters = [
        {
         'kernel': ['rbf', 'poly', 'sigmoid'],
         'gamma': [10, 100, 150],
         'C': [0.05, 0.1, 1]
        },
    ]


    scores = [
        # 'precision',
        'recall',
        # 'f1'
    ]

    for score in scores:
        print("# Tuning hyper-parameters for %s" % score)
        print()

        clf = GridSearchCV(
            SVC(),  
            param_grid=parameters,  # parameters to tune via cross validation
            refit=True,  # fit using all data, on the best detected classifier
            n_jobs=-1,  # number of cores to use for parallelization; -1 for "all cores"
            scoring=score,  # what score are we optimizing?
            cv=StratifiedKFold(y_train, n_folds=3),  # what type of cross validation to use
        )

        clf.fit(X_train, y_train)

        print("Best parameters set found on training set:")
        print()
        print(clf.best_params_)

        print("Detailed classification report:")
        print()
        print("Scores on training set.")
        y_true, y_pred = y_train, clf.predict(X_train)
        print(classification_report(y_true, y_pred))
        print()


        print("Scores on test set.")
        print()
        y_true, y_pred = y_test, clf.predict(X_test)
        print(classification_report(y_true, y_pred))
        print()
开发者ID:pablocelayes,项目名称:sna_classifier,代码行数:53,代码来源:grid_svc.py

示例7: model_select_rdf

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import predict [as 别名]
def model_select_rdf(dataset):
    X_train, X_test, y_train, y_test = dataset

    # Set the parameters by cross-validation
    params = dict(
        max_depth=np.linspace(5,10,5),
        n_estimators=[3, 4, 5, 10],
        # max_features=[25, 50, 75, 100, 150]
        # max_features = [5, 10, 15]
    )


    scores = [
        # 'precision',
        'recall',
        'f1'
    ]

    for score in scores:
        print("# Tuning hyper-parameters for %s" % score)
        print()

        clf = GridSearchCV(
            RandomForestClassifier(),  
            param_grid=params,  # parameters to tune via cross validation
            refit=True,  # fit using all data, on the best detected classifier
            n_jobs=-1,  # number of cores to use for parallelization; -1 for "all cores"
            scoring=score,  # what score are we optimizing?
            cv=StratifiedKFold(y_train, n_folds=3),  # what type of cross validation to use
        )

        clf.fit(X_train, y_train)

        print("Best parameters set found on training set:")
        print()
        print(clf.best_params_)

        print("Detailed classification report:")
        print()
        print("Scores on training set.")
        y_true, y_pred = y_train, clf.predict(X_train)
        print(classification_report(y_true, y_pred))
        print()


        print("Scores on test set.")
        print()
        y_true, y_pred = y_test, clf.predict(X_test)
        print(classification_report(y_true, y_pred))
        print()
开发者ID:pablocelayes,项目名称:sna_classifier,代码行数:52,代码来源:grid_rdfs.py

示例8: optimize_model_regress

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import predict [as 别名]
def optimize_model_regress(data, tc):
    train_data = data.sample(frac=.8)
    test_data = data.drop(train_data.index)
    train_y = train_data['temperature']/tc
    train_X = train_data.drop(['T/Tc','temperature'], axis=1)
    test_y = test_data['temperature']/tc
    test_X = test_data.drop(['T/Tc','temperature'], axis=1)

    tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1,.5,.1,1e-2,1e-3, 1e-4],
                     'C': [.1,.5, 1,5, 10, 50, 100,500, 1000]},
                    {'kernel': ['linear'], 'C': [.1,.5, 1,5, 10, 50, 100,500, 1000]}]

    model = GridSearchCV(svm.SVR(), tuned_parameters, cv=5)
    model.fit(train_X, train_y)
    print()
    print("Best parameters:")
    print()
    print(model.best_params_)
    print()
    print("Grid scores:")
    print()
    means = model.cv_results_['mean_test_score']
    stds = model.cv_results_['std_test_score']
    for mean, std, params in zip(means, stds, model.cv_results_['params']):
        print("%0.3f (+/-%0.03f) for %r"
              % (mean, std * 2, params))
    print()
    y_true, y_pred = test_y, model.predict(test_X)
    print("Mean Absolute Error : " + str(mean_absolute_error(y_pred,y_true)))
    print()
开发者ID:aramamurti,项目名称:BEC-monopoles,代码行数:32,代码来源:ml_analysis.py

示例9: test_grid_search_precomputed_kernel

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import predict [as 别名]
def test_grid_search_precomputed_kernel():
    # Test that grid search works when the input features are given in the
    # form of a precomputed kernel matrix
    X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)

    # compute the training kernel matrix corresponding to the linear kernel
    K_train = np.dot(X_[:180], X_[:180].T)
    y_train = y_[:180]

    clf = SVC(kernel='precomputed')
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
    cv.fit(K_train, y_train)

    assert_true(cv.best_score_ >= 0)

    # compute the test kernel matrix
    K_test = np.dot(X_[180:], X_[:180].T)
    y_test = y_[180:]

    y_pred = cv.predict(K_test)

    assert_true(np.mean(y_pred == y_test) >= 0)

    # test error is raised when the precomputed kernel is not array-like
    # or sparse
    assert_raises(ValueError, cv.fit, K_train.tolist(), y_train)
开发者ID:YinongLong,项目名称:scikit-learn,代码行数:28,代码来源:test_search.py

示例10: main

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import predict [as 别名]
def main():
    # 1 查看训练集和测试集的数据特征
    train_data = pandas.read_csv('data/train.csv')
    test_data = pandas.read_csv('data/test.csv')
    print(train_data.info())
    print(test_data.info())
    # 2 人工选取预测有效的特征
    selected_features = ['Pclass', 'Sex', 'Age', 'Embarked', 'SibSp', 'Parch', 'Fare']
    x_train = train_data[selected_features]
    x_test = test_data[selected_features]

    y_train = train_data['Survived']

    # 3 补充缺失值
    # 得知Embared特征惨在缺失值,需要补完
    print(x_train['Embarked'].value_counts())
    print(x_test['Embarked'].value_counts())

    # 对于类别型特征,使用出现频率最高的特征来填充,可以作为减少引入误差的方法之一
    x_train['Embarked'].fillna('S', inplace=True)
    x_test['Embarked'].fillna('S', inplace=True)

    x_train['Age'].fillna(x_train['Age'].mean(), inplace=True)
    x_test['Age'].fillna(x_test['Age'].mean(), inplace=True)

    x_test['Fare'].fillna(x_test['Fare'].mean(), inplace=True)
    print(x_train.info())
    print(x_test.info())

    # 4 采用DictVectorizer对特征向量化
    dict_vectorizer = DictVectorizer(sparse=False)
    x_train = dict_vectorizer.fit_transform(x_train.to_dict(orient='record'))
    print(dict_vectorizer.feature_names_)
    x_test = dict_vectorizer.transform(x_test.to_dict(orient='record'))

    # 5 训练模型
    forest_classifier = RandomForestClassifier()
    xgb_classifier = XGBClassifier()

    # 使用5折交叉验证的方式进行性能评估
    forest_mean_score = cross_val_score(forest_classifier, x_train, y_train, cv=5).mean()
    print(forest_mean_score)
    xgb_mean_score = cross_val_score(xgb_classifier, x_train, y_train, cv=5).mean()
    print(xgb_mean_score)

    # 6 使用并行网格搜索的方式选择更好的超参组合
    params = {
        'max_depth': range(2, 8), 'n_estimators': range(100, 1200, 200),
        'learning_rate': [0.05, 0.1, 0.25, 0.5, 1.0]
    }
    xgbc_best = XGBClassifier()
    grid_search_cv = GridSearchCV(xgbc_best, params, n_jobs=-1, cv=5)
    grid_search_cv.fit(x_train, y_train)
    print(grid_search_cv.best_score_)
    print(grid_search_cv.best_params_)

    # 7 预测结果并写入文件
    predict_result = grid_search_cv.predict(x_test)
    submission_data = pandas.DataFrame({'PassengerId': test_data['PassengerId'], 'Survived': predict_result})
    submission_data.to_csv('data/submission/titanic_submission.csv', index=False)
开发者ID:ACEGuiPeng,项目名称:kaggle_demo_tests,代码行数:62,代码来源:example_titanic_pratice.py

示例11: kernel_ridge_linear

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import predict [as 别名]
def kernel_ridge_linear(X,Y,x,y):
    reg = GridSearchCV(KernelRidge(kernel='linear'), cv=10,param_grid={"alpha": [1e0,0.1,1e-2,1e-3],"degree":[1,2,3,4] })
    reg.fit(X, Y)
    y_predict = reg.predict(x)
    rmse = RMSE(y=y, y_predict=y_predict)
    print "rmse: ", str(rmse)
    return y_predict
开发者ID:gautamskumar,项目名称:ws,代码行数:9,代码来源:funcs.py

示例12: svr_linear

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import predict [as 别名]
def svr_linear(X,Y,x,y):
    reg = GridSearchCV(SVR(kernel='linear'), cv=10,param_grid={"C":[1e0, 1e1, 1e2, 1e3], "degree":[1,2,3,4]})
    reg.fit(X, Y)
    y_predict = reg.predict(x)
    rmse = RMSE(y=y, y_predict=y_predict)
    print "rmse: ", str(rmse)
    return rmse, y_predict
开发者ID:gautamskumar,项目名称:ws,代码行数:9,代码来源:funcs.py

示例13: gridsearch_launch

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import predict [as 别名]
def gridsearch_launch(gridSamples, gridTarget, nb_clusters):

    # print("SAMPLES")
    # # print(gridSamples);
    # print(gridTarget);
    #
    # print(len(gridTarget))
    # print(len(gridSamples))

    X = gridSamples.reshape((len(gridSamples), -1))
    y = gridTarget

    # Split the dataset


    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0)

    # tuned_parameters = [
    #     {'init': ['k-means++'], 'n_clusters': [3, 4, 5, 6, 7], 'n_init': [5, 10, 20, 30, 40], 'algorithm': ['auto', 'full', 'elkan']},
    #     {'init': ['random'], 'n_clusters': [3, 4, 5, 6, 7], 'n_init': [5, 10, 20, 30, 40], 'algorithm': ['auto', 'full', 'elkan']},
    # ]

    tuned_parameters = [
        {'init': ['k-means++'], 'n_init': [5, 10, 20, 30, 40], 'algorithm': ['auto', 'full', 'elkan']},
        {'init': ['random'], 'n_init': [5, 10, 20, 30, 40], 'algorithm': ['auto', 'full', 'elkan']},
    ]

    scores = ['precision', 'recall']

    for score in scores:
        print("# Tuning hyper-parameters for %s" % score)
        print()

        clf = GridSearchCV(cluster.KMeans(n_clusters=nb_clusters), tuned_parameters, cv=5,
                           scoring='%s_macro' % score)
        clf.fit(X_train, y_train)

        print("Best parameters set found on development set:")
        print()
        print(clf.best_params_)
        print()
        print("Grid scores on development set:")
        print()
        means = clf.cv_results_['mean_test_score']
        stds = clf.cv_results_['std_test_score']
        for mean, std, params in zip(means, stds, clf.cv_results_['params']):
            print("%0.3f (+/-%0.03f) for %r"
                  % (mean, std * 2, params))
        print()

        print("Detailed classification report:")
        print()
        print("The model is trained on the full development set.")
        print("The scores are computed on the full evaluation set.")
        print()
        y_true, y_pred = y_test, clf.predict(X_test)
        print(classification_report(y_true, y_pred))
        print()
开发者ID:cbib,项目名称:SuperClass,代码行数:60,代码来源:gridsearch.py

示例14: test_grid_search_sparse

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import predict [as 别名]
def test_grid_search_sparse():
    # Test that grid search works with both dense and sparse matrices
    X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)

    clf = LinearSVC()
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
    cv.fit(X_[:180], y_[:180])
    y_pred = cv.predict(X_[180:])
    C = cv.best_estimator_.C

    X_ = sp.csr_matrix(X_)
    clf = LinearSVC()
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
    cv.fit(X_[:180].tocoo(), y_[:180])
    y_pred2 = cv.predict(X_[180:])
    C2 = cv.best_estimator_.C

    assert_true(np.mean(y_pred == y_pred2) >= .9)
    assert_equal(C, C2)
开发者ID:YinongLong,项目名称:scikit-learn,代码行数:21,代码来源:test_search.py

示例15: BDT

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import predict [as 别名]
def BDT(X,Y,x,y):
    #r = GridSearchCV(DecisionTreeRegressor(), cv=10, param_grid={"max_depth": [ 5, 6, 7, 8, 9, 10, 15, 20]})
    reg = GridSearchCV(en.AdaBoostRegressor(base_estimator=DecisionTreeRegressor()), cv=10, param_grid={"n_estimators":[100],"learning_rate":[0.01],"loss":['exponential']})
    #reg = en.AdaBoostRegressor(base_estimator=r, n_estimators=50, learning_rate=0.01, loss='exponential')
    reg.fit(X, Y)
    y_predict = reg.predict(x)
    y_predict = abs(y_predict)
    rmse = RMSE(y=y, y_predict=y_predict)
    print "rmse: ", str(rmse)
    return y_predict
开发者ID:gautamskumar,项目名称:ws,代码行数:12,代码来源:funcs.py


注:本文中的sklearn.model_selection.GridSearchCV.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。