当前位置: 首页>>代码示例>>Python>>正文


Python GridSearchCV.decision_function方法代码示例

本文整理汇总了Python中sklearn.model_selection.GridSearchCV.decision_function方法的典型用法代码示例。如果您正苦于以下问题:Python GridSearchCV.decision_function方法的具体用法?Python GridSearchCV.decision_function怎么用?Python GridSearchCV.decision_function使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.model_selection.GridSearchCV的用法示例。


在下文中一共展示了GridSearchCV.decision_function方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_grid_search

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import decision_function [as 别名]
def test_grid_search():
    # Test that the best estimator contains the right value for foo_param
    clf = MockClassifier()
    grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3)
    # make sure it selects the smallest parameter in case of ties
    old_stdout = sys.stdout
    sys.stdout = StringIO()
    grid_search.fit(X, y)
    sys.stdout = old_stdout
    assert_equal(grid_search.best_estimator_.foo_param, 2)

    assert_array_equal(grid_search.results_["param_foo_param"].data, [1, 2, 3])

    # Smoke test the score etc:
    grid_search.score(X, y)
    grid_search.predict_proba(X)
    grid_search.decision_function(X)
    grid_search.transform(X)

    # Test exception handling on scoring
    grid_search.scoring = 'sklearn'
    assert_raises(ValueError, grid_search.fit, X, y)
开发者ID:1992huanghai,项目名称:scikit-learn,代码行数:24,代码来源:test_search.py

示例2: enumerate

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import decision_function [as 别名]
    # iterate over classifiers
    for est_idx, (name, (estimator, param_grid)) in \
            enumerate(zip(names, classifiers)):
        ax = axes[ds_cnt, est_idx + 1]

        clf = GridSearchCV(estimator=estimator, param_grid=param_grid, cv=5)
        with ignore_warnings(category=ConvergenceWarning):
            clf.fit(X_train, y_train)
        score = clf.score(X_test, y_test)
        print('%s: %.2f' % (name, score))

        # plot the decision boundary. For that, we will assign a color to each
        # point in the mesh [x_min, x_max]*[y_min, y_max].
        if hasattr(clf, "decision_function"):
            Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
        else:
            Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

        # put the result into a color plot
        Z = Z.reshape(xx.shape)
        ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)

        # plot the training points
        ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,
                   edgecolors='k')
        # and testing points
        ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,
                   edgecolors='k', alpha=0.6)
        ax.set_xlim(xx.min(), xx.max())
        ax.set_ylim(yy.min(), yy.max())
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:32,代码来源:plot_discretization_classification.py

示例3: cross_val_score

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import decision_function [as 别名]
explicit_accuracy = cross_val_score(SVC(), digits.data, digits.target == 9,scoring="accuracy")
print("Explicit accuracy scoring: {}".format(explicit_accuracy))
roc_auc = cross_val_score(SVC(), digits.data, digits.target == 9,scoring="roc_auc")
print("AUC scoring: {}".format(roc_auc))

X_train, X_test, y_train, y_test = train_test_split(
digits.data, digits.target == 9, random_state=0)
# we provide a somewhat bad grid to illustrate the point:
param_grid = {'gamma': [0.0001, 0.01, 0.1, 1, 10]}
# using the default scoring of accuracy:
grid = GridSearchCV(SVC(), param_grid=param_grid)
grid.fit(X_train, y_train)
print("Grid-Search with accuracy")
print("Best parameters:", grid.best_params_)
print("Best cross-validation score (accuracy)): {:.3f}".format(grid.best_score_))
print("Test set AUC: {:.3f}".format(
roc_auc_score(y_test, grid.decision_function(X_test))))
print("Test set accuracy: {:.3f}".format(grid.score(X_test, y_test)))

# using AUC scoring instead:
grid = GridSearchCV(SVC(), param_grid=param_grid, scoring="roc_auc")
grid.fit(X_train, y_train)
print("\nGrid-Search with AUC")
print("Best parameters:", grid.best_params_)
print("Best cross-validation score (AUC): {:.3f}".format(grid.best_score_))
print("Test set AUC: {:.3f}".format(
roc_auc_score(y_test, grid.decision_function(X_test))))
print("Test set accuracy: {:.3f}".format(grid.score(X_test, y_test)))

from sklearn.metrics.scorer import SCORERS
print("Available scorers:\n{}".format(sorted(SCORERS.keys())))
开发者ID:hitesh789,项目名称:datasharing,代码行数:33,代码来源:Chp-5+Model+Evaluation+and+Improvement.py

示例4: multiplier

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import decision_function [as 别名]

# In[15]:

# Cross-validated performance heatmap
cv_score_mat = pd.pivot_table(cv_result_df, values='mean_test_score', index='classify__l1_ratio', columns='classify__alpha')
ax = sns.heatmap(cv_score_mat, annot=True, fmt='.1%')
ax.set_xlabel('Regularization strength multiplier (alpha)')
ax.set_ylabel('Elastic net mixing parameter (l1_ratio)');


# ## Use Optimal Hyperparameters to Output ROC Curve

# In[16]:

y_pred_train = cv_pipeline.decision_function(X_train)
y_pred_test = cv_pipeline.decision_function(X_test)

def get_threshold_metrics(y_true, y_pred):
    roc_columns = ['fpr', 'tpr', 'threshold']
    roc_items = zip(roc_columns, roc_curve(y_true, y_pred))
    roc_df = pd.DataFrame.from_items(roc_items)
    auroc = roc_auc_score(y_true, y_pred)
    return {'auroc': auroc, 'roc_df': roc_df}

metrics_train = get_threshold_metrics(y_train, y_pred_train)
metrics_test = get_threshold_metrics(y_test, y_pred_test)


# In[17]:
开发者ID:KT12,项目名称:Machine-Learning,代码行数:31,代码来源:2.TCGA-MLexample.py

示例5: range

# 需要导入模块: from sklearn.model_selection import GridSearchCV [as 别名]
# 或者: from sklearn.model_selection.GridSearchCV import decision_function [as 别名]
# In[19]:

best_clf = cv.best_estimator_
coef = best_clf.coef_[0]
plt.figure(figsize = (15, 5))
colors = ["red" if coef[i] < 0 else "blue" for i in range(len(coef))]
plt.bar(np.arange(len(coef)), coef, color = colors)
plt.xticks(np.arange(1, len(coef)+1), rotation=45, ha="right");


# ## Use Optimal Hyperparameters to Output ROC Curve

# In[20]:

y_pred_train = cv.decision_function(X_train_scale)
y_pred_test = cv.decision_function(X_test_scale)

def get_threshold_metrics(y_true, y_pred):
    roc_columns = ['fpr', 'tpr', 'threshold']
    roc_items = zip(roc_columns, roc_curve(y_true, y_pred))
    roc_df = pd.DataFrame.from_items(roc_items)
    auroc = roc_auc_score(y_true, y_pred)
    return {'auroc': auroc, 'roc_df': roc_df}

metrics_train = get_threshold_metrics(y_train, y_pred_train)
metrics_test = get_threshold_metrics(y_test, y_pred_test)


# In[21]:
开发者ID:KT12,项目名称:Machine-Learning,代码行数:31,代码来源:RIT1-PCA-htcai.py


注:本文中的sklearn.model_selection.GridSearchCV.decision_function方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。