当前位置: 首页>>代码示例>>Python>>正文


Python MDS.fit_transform方法代码示例

本文整理汇总了Python中sklearn.manifold.MDS.fit_transform方法的典型用法代码示例。如果您正苦于以下问题:Python MDS.fit_transform方法的具体用法?Python MDS.fit_transform怎么用?Python MDS.fit_transform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.manifold.MDS的用法示例。


在下文中一共展示了MDS.fit_transform方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: mds

# 需要导入模块: from sklearn.manifold import MDS [as 别名]
# 或者: from sklearn.manifold.MDS import fit_transform [as 别名]
def mds(similarity, euclid=False):
    if euclid:
        model = MDS(max_iter=1000)
        result = model.fit_transform(similarity)
    else:
        model = MDS(max_iter=1000, dissimilarity='precomputed')
        result = model.fit_transform(1 - similarity)

    return result.T
开发者ID:thran,项目名称:experiments2.0,代码行数:11,代码来源:projection.py

示例2: project_in_2D

# 需要导入模块: from sklearn.manifold import MDS [as 别名]
# 或者: from sklearn.manifold.MDS import fit_transform [as 别名]
def project_in_2D(distance_mat, method='mds'):
  """
  Project SDRs onto a 2D space using manifold learning algorithms
  :param distance_mat: A square matrix with pairwise distances
  :param method: Select method from 'mds' and 'tSNE'
  :return: an array with dimension (numSDRs, 2). It contains the 2D projections
     of each SDR
  """
  seed = np.random.RandomState(seed=3)

  if method == 'mds':
    mds = MDS(n_components=2, max_iter=3000, eps=1e-9,
              random_state=seed,
              dissimilarity="precomputed", n_jobs=1)

    pos = mds.fit(distance_mat).embedding_

    nmds = MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12,
               dissimilarity="precomputed", random_state=seed,
               n_jobs=1, n_init=1)

    pos = nmds.fit_transform(distance_mat, init=pos)
  elif method == 'tSNE':
    tsne = TSNE(n_components=2, init='pca', random_state=0)
    pos = tsne.fit_transform(distance_mat)
  else:
    raise NotImplementedError

  return pos
开发者ID:ywcui1990,项目名称:nupic.research,代码行数:31,代码来源:proj.py

示例3: embed_two_dimensions

# 需要导入模块: from sklearn.manifold import MDS [as 别名]
# 或者: from sklearn.manifold.MDS import fit_transform [as 别名]
def embed_two_dimensions(data, vectorizer, size=10, n_components=5, colormap='YlOrRd'):
    if hasattr(data, '__iter__'):
        iterable = data
    else:
        raise Exception('ERROR: Input must be iterable')
    import itertools
    iterable_1, iterable_2 = itertools.tee(iterable)
    # get labels
    labels = []
    for graph in iterable_2:
        label = graph.graph.get('id', None)
        if label:
            labels.append(label)

    # transform iterable into sparse vectors
    data_matrix = vectorizer.transform(iterable_1)
    # embed high dimensional sparse vectors in 2D
    from sklearn import metrics
    distance_matrix = metrics.pairwise.pairwise_distances(data_matrix)

    from sklearn.manifold import MDS
    feature_map = MDS(n_components=n_components, dissimilarity='precomputed')
    explicit_data_matrix = feature_map.fit_transform(distance_matrix)

    from sklearn.decomposition import TruncatedSVD
    pca = TruncatedSVD(n_components=2)
    low_dimension_data_matrix = pca.fit_transform(explicit_data_matrix)

    plt.figure(figsize=(size, size))
    embed_dat_matrix_two_dimensions(low_dimension_data_matrix, labels=labels, density_colormap=colormap)
    plt.show()
开发者ID:gianlucacorrado,项目名称:EDeN,代码行数:33,代码来源:embedding.py

示例4: scale_plot

# 需要导入模块: from sklearn.manifold import MDS [as 别名]
# 或者: from sklearn.manifold.MDS import fit_transform [as 别名]
 def scale_plot(input_data, data_colors=None, cluster_colors=None,
                cluster_sizes=None, dissimilarity='euclidean', filey=None):
     """ Plot MDS of data and clusters """
     if data_colors is None:
         data_colors = 'r'
     if cluster_colors is None:
         cluster_colors='b'
     if cluster_sizes is None:
         cluster_sizes = 2200
         
     # scale
     mds = MDS(dissimilarity=dissimilarity)
     mds_out = mds.fit_transform(input_data)
     
     with sns.axes_style('white'):
         f=plt.figure(figsize=(14,14))
         plt.scatter(mds_out[n_clusters:,0], mds_out[n_clusters:,1], 
                     s=75, color=data_colors)
         plt.scatter(mds_out[:n_clusters,0], mds_out[:n_clusters,1], 
                     marker='*', s=cluster_sizes, color=cluster_colors,
                     edgecolor='black', linewidth=2)
         # plot cluster number
         offset = .011
         font_dict = {'fontsize': 17, 'color':'white'}
         for i,(x,y) in enumerate(mds_out[:n_clusters]):
             if i<9:
                 plt.text(x-offset,y-offset,i+1, font_dict)
             else:
                 plt.text(x-offset*2,y-offset,i+1, font_dict)
     if filey is not None:
         plt.title(path.basename(filey)[:-4], fontsize=20)
         save_figure(f, filey)
         plt.close()
开发者ID:IanEisenberg,项目名称:Self_Regulation_Ontology,代码行数:35,代码来源:HCA_plots.py

示例5: main

# 需要导入模块: from sklearn.manifold import MDS [as 别名]
# 或者: from sklearn.manifold.MDS import fit_transform [as 别名]
def main():
    args = docopt(__doc__)
    is_mds = args['--mds']

    # load datasets
    digits = load_digits()
    X = digits.data
    y = digits.target
    labels = digits.target_names

    # dimension reduction
    if is_mds:
        model = MDS(n_components=2)
    else:
        model = PCA(n_components=2)
    X_fit = model.fit_transform(X)

    for i in range(labels.shape[0]):
        plt.scatter(X_fit[y == i, 0], X_fit[y == i, 1],
                    color=COLORS[i], label=str(i))

    plt.legend(loc='upper left')
    plt.autoscale()
    plt.grid()
    plt.show()
开发者ID:JackBass,项目名称:ml-algorithms-simple,代码行数:27,代码来源:digits_plot.py

示例6: plotFlatClusterGraph

# 需要导入模块: from sklearn.manifold import MDS [as 别名]
# 或者: from sklearn.manifold.MDS import fit_transform [as 别名]
def plotFlatClusterGraph(tf_idf_matrix, clusters, headlines_utf):
    dist = 1 - cosine_similarity(tf_idf_matrix)
    MDS()
    mds = MDS(n_components=2, dissimilarity="precomputed", random_state=1)
    pos = mds.fit_transform(dist)
    xs, ys = pos[:, 0], pos[:, 1]
    cluster_colors = {0: '#FE642E', 1: '#B40404', 2: '#D7DF01', 3: '#01DF01', 4: '#00FFBF', 5: '#2E64FE', 6:'#8904B1', 7:'#FA58F4', 8:'#FE2E9A', 9:'#A4A4A4'}

    #create data frame that has the result of the MDS plus the cluster numbers and titles
    df = pandas.DataFrame(dict(x=xs, y=ys, label=clusters, title=headlines_utf)) 
    groups = df.groupby('label')

    # set up plots
    fig, ax = plt.subplots(figsize=(17, 9)) # set size

    #iterate through groups to layer the plots
    for name, group in groups:
        ax.plot(group.x, group.y, marker='o', linestyle='', ms=12, color=cluster_colors[name], mec='none')
        ax.set_aspect('auto')
        ax.tick_params(axis= 'x', which='both', bottom='off', top='off', labelbottom='off')
        ax.tick_params(axis= 'y', which='both', left='off', top='off', labelleft='off')
        ax.legend(numpoints=1)  #show legend with only 1 point

    #add label in x,y position with the label as the film title
    for t_n in range(len(df)):
        ax.text(df.ix[t_n]['x'], df.ix[t_n]['y'], df.ix[t_n]['title'], size=8)  
    
    plt.savefig('../plots/flat_clusters.png', dpi=400)
开发者ID:rubyagarwal,项目名称:NewsClustering,代码行数:30,代码来源:clusterInfoProcessor.py

示例7: create_2dprojection

# 需要导入模块: from sklearn.manifold import MDS [as 别名]
# 或者: from sklearn.manifold.MDS import fit_transform [as 别名]
def create_2dprojection(distmat):
	#uses isomap to return a species distance map in 2d based on the topological distmat of all species in tree
	print 'map to 3d space'
	mapper=MDS(n_components=3, metric=True, n_init=4, max_iter=300, verbose=0, eps=0.001, n_jobs=-1, random_state=0, dissimilarity='precomputed')
	projmat =mapper.fit_transform(distmat)
	print 'DONE'
	return projmat
开发者ID:cactuskid,项目名称:Taxonomy_scripts,代码行数:9,代码来源:detectiontree.py

示例8: reorder_channels_by_xyz_coord

# 需要导入模块: from sklearn.manifold import MDS [as 别名]
# 或者: from sklearn.manifold.MDS import fit_transform [as 别名]
def reorder_channels_by_xyz_coord(data, channel_names=None):
    """
    :param data: 2-d array in the format [n_samples, n_channels]
    :param channel_names: names of the EEG channels
    :return: data, channel_names permutated accordingly
    """
    # work on transposed view, i.e. [channel, samples]
    data = data.T

    # map channels to 1-d coordinates through MDS
    from sklearn.manifold import MDS
    distances = compute_electrode_distance_matrix()
    mds = MDS(n_components=1, dissimilarity='precomputed')
    projection = mds.fit_transform(distances).reshape(data.shape[0])
    order = np.argsort(projection)
    print mds.stress_
    print order

    # re-order channels
    data = data[order]
    # restore initial axes layout
    data = data.T

    # re-order channel_names
    channel_names = reorder_channel_names(channel_names, order)

    return data, channel_names
开发者ID:Qi0116,项目名称:deepthought,代码行数:29,代码来源:channel_util.py

示例9: main

# 需要导入模块: from sklearn.manifold import MDS [as 别名]
# 或者: from sklearn.manifold.MDS import fit_transform [as 别名]
def main():
    digits = load_digits()
    X = digits.data
    y = digits.target
    mds = MDS()
    X_mds = mds.fit_transform(X)
    plot_embedding(X_mds, y)
开发者ID:JackBass,项目名称:ml-algorithms-simple,代码行数:9,代码来源:mds_sklearn_sample.py

示例10: visualize_clusters

# 需要导入模块: from sklearn.manifold import MDS [as 别名]
# 或者: from sklearn.manifold.MDS import fit_transform [as 别名]
def visualize_clusters(tfidf_matrix, vocabulary, km):

    # calcuate the cosine distance between each document
    # this will be used for plotting on a euclidean (2-dimensional) plane.
    dist = 1 - cosine_similarity(tfidf_matrix)
    clusters = km.labels_.tolist()

    # convert two components as we are plotting points in a two-dimensional plane
    # 'precomputed' because we provide a distance matrix
    # we will also specify 'random_state' so the plot is reproducible.
    mds = MDS(n_components=2, dissimilarity="precomputed", random_state=1)
    pos = mds.fit_transform(dist)  # shape (n_components, n_samples)
    xs, ys = pos[:, 0], pos[:, 1]

    # set up colors per clusters using a dict
    cluster_colors = {0: '#1b9e77', 1: '#d95f02', 2: '#7570b3', 3: '#e7298a', 4: '#66a61e', 5: '#99cc00'}

    # set up cluster names using a dict (perhaps using the top terms of each cluster)
    cluster_names = {0: '0',
                     1: '1',
                     2: '2',
                     3: '3',
                     4: '4',
                     5: '5'}

    #create data frame that has the result of the MDS plus the cluster numbers and titles
    df = pd.DataFrame(dict(x=xs, y=ys, label=clusters))

    #group by cluster
    groups = df.groupby('label')


    # set up plot
    fig, ax = plt.subplots(figsize=(17, 9)) # set size
    ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling

    #iterate through groups to layer the plot
    #note that I use the cluster_name and cluster_color dicts with the 'name' lookup to return the appropriate color/label
    for name, group in groups:
        ax.plot(group.x, group.y, marker='o', linestyle='', ms=12,
                label=cluster_names[name], color=cluster_colors[name],
                mec='none')
        ax.set_aspect('auto')
        ax.tick_params(\
            axis= 'x',         # changes apply to the x-axis
            which='both',      # both major and minor ticks are affected
            bottom='off',      # ticks along the bottom edge are off
            top='off',         # ticks along the top edge are off
            labelbottom='off')
        ax.tick_params(\
            axis= 'y',         # changes apply to the y-axis
            which='both',      # both major and minor ticks are affected
            left='off',        # ticks along the bottom edge are off
            top='off',         # ticks along the top edge are off
            labelleft='off')

    ax.legend(numpoints=1)  #show legend with only 1 point

    plt.show() #show the plot
开发者ID:msobrevillac,项目名称:btpucp-clusters,代码行数:61,代码来源:clustering.py

示例11: generate_cluster_plot_frame

# 需要导入模块: from sklearn.manifold import MDS [as 别名]
# 或者: from sklearn.manifold.MDS import fit_transform [as 别名]
    def generate_cluster_plot_frame(self):
        MDS()
        mds = MDS(n_components=2, dissimilarity="precomputed", random_state=1)
        dist = 1 - cosine_similarity(self.tfidf_matrix)
        pos = mds.fit_transform(dist)
        xs, ys = pos[:,0], pos[:,1]

        self.cluster_plot_frame = pd.DataFrame(dict(x=xs, y=ys, label=self.clusters, chapter=self.chapter_list, book=self.book_list))
开发者ID:Kali89,项目名称:HarryPotterClusters,代码行数:10,代码来源:useful_script.py

示例12: plot_clusters

# 需要导入模块: from sklearn.manifold import MDS [as 别名]
# 或者: from sklearn.manifold.MDS import fit_transform [as 别名]
def plot_clusters(num_clusters, feature_matrix,
                  cluster_data, movie_data,
                  plot_size=(16,8)):
    # generate random color for clusters                  
    def generate_random_color():
        color = '#%06x' % random.randint(0, 0xFFFFFF)
        return color
    # define markers for clusters    
    markers = ['o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd']
    # build cosine distance matrix
    cosine_distance = 1 - cosine_similarity(feature_matrix) 
    # dimensionality reduction using MDS
    mds = MDS(n_components=2, dissimilarity="precomputed", 
              random_state=1)
    # get coordinates of clusters in new low-dimensional space
    plot_positions = mds.fit_transform(cosine_distance)  
    x_pos, y_pos = plot_positions[:, 0], plot_positions[:, 1]
    # build cluster plotting data
    cluster_color_map = {}
    cluster_name_map = {}
    for cluster_num, cluster_details in cluster_data.items():
        # assign cluster features to unique label
        cluster_color_map[cluster_num] = generate_random_color()
        cluster_name_map[cluster_num] = ', '.join(cluster_details['key_features'][:5]).strip()
    # map each unique cluster label with its coordinates and movies
    cluster_plot_frame = pd.DataFrame({'x': x_pos,
                                       'y': y_pos,
                                       'label': movie_data['Cluster'].values.tolist(),
                                       'title': movie_data['Title'].values.tolist()
                                        })
    grouped_plot_frame = cluster_plot_frame.groupby('label')
    # set plot figure size and axes
    fig, ax = plt.subplots(figsize=plot_size) 
    ax.margins(0.05)
    # plot each cluster using co-ordinates and movie titles
    for cluster_num, cluster_frame in grouped_plot_frame:
         marker = markers[cluster_num] if cluster_num < len(markers) \
                  else np.random.choice(markers, size=1)[0]
         ax.plot(cluster_frame['x'], cluster_frame['y'], 
                 marker=marker, linestyle='', ms=12,
                 label=cluster_name_map[cluster_num], 
                 color=cluster_color_map[cluster_num], mec='none')
         ax.set_aspect('auto')
         ax.tick_params(axis= 'x', which='both', bottom='off', top='off',        
                        labelbottom='off')
         ax.tick_params(axis= 'y', which='both', left='off', top='off',         
                        labelleft='off')
    fontP = FontProperties()
    fontP.set_size('small')    
    ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.01), fancybox=True, 
              shadow=True, ncol=5, numpoints=1, prop=fontP) 
    #add labels as the film titles
    for index in range(len(cluster_plot_frame)):
        ax.text(cluster_plot_frame.ix[index]['x'], 
                cluster_plot_frame.ix[index]['y'], 
                cluster_plot_frame.ix[index]['title'], size=8)  
    # show the plot           
    plt.show() 
开发者ID:000Nelson000,项目名称:text-analytics-with-python,代码行数:60,代码来源:document_clustering.py

示例13: compute_2d_mapping

# 需要导入模块: from sklearn.manifold import MDS [as 别名]
# 或者: from sklearn.manifold.MDS import fit_transform [as 别名]
def compute_2d_mapping(layout):
    sphere_coords = layout.sphere_coords()
    radius = layout.sphere_radius()
    from sklearn.manifold import MDS
    distances = compute_electrode_distance_matrix(sphere_coords, radius)
    mds = MDS(n_components=2, dissimilarity='precomputed')
    projection = mds.fit_transform(distances)
    # print projection.shape
    return projection
开发者ID:Qi0116,项目名称:deepthought,代码行数:11,代码来源:channel_util.py

示例14: mds_embed

# 需要导入模块: from sklearn.manifold import MDS [as 别名]
# 或者: from sklearn.manifold.MDS import fit_transform [as 别名]
def mds_embed(graph):

    sorted_node_list = sorted(list(graph.nodes()), key=len)
    dmat = nx.floyd_warshall_numpy(graph, nodelist=sorted_node_list)

    gmds = MDS(n_jobs=-2, dissimilarity="precomputed")
    embed_pts = gmds.fit_transform(dmat)

    return (embed_pts, dmat, sorted_node_list)
开发者ID:theilmbh,项目名称:NeuralTDA,代码行数:11,代码来源:stimulus_space.py

示例15: convert_matrix_to_coordinates

# 需要导入模块: from sklearn.manifold import MDS [as 别名]
# 或者: from sklearn.manifold.MDS import fit_transform [as 别名]
def convert_matrix_to_coordinates(sym_matrix, components):
    """
    :param sym_matrix: array, [n_samples, n_samples]
    :param components: int: 2 or 3 for MDS
    :return: Output of MDS, xy or xyz coordinates as 2d numpy array
             with shape [n_samples, components]
    """
    # Create coordinates based on multi dimensional scaling
    mds = MDS(n_components=components, dissimilarity="precomputed", random_state=1)
    coordinates = mds.fit_transform(sym_matrix)
    return coordinates
开发者ID:monarch-initiative,项目名称:monarch-analysis,代码行数:13,代码来源:cluster-dbscan.py


注:本文中的sklearn.manifold.MDS.fit_transform方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。