当前位置: 首页>>代码示例>>Python>>正文


Python manifold.MDS类代码示例

本文整理汇总了Python中sklearn.manifold.MDS的典型用法代码示例。如果您正苦于以下问题:Python MDS类的具体用法?Python MDS怎么用?Python MDS使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了MDS类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_2dprojection

def create_2dprojection(distmat):
	#uses isomap to return a species distance map in 2d based on the topological distmat of all species in tree
	print 'map to 3d space'
	mapper=MDS(n_components=3, metric=True, n_init=4, max_iter=300, verbose=0, eps=0.001, n_jobs=-1, random_state=0, dissimilarity='precomputed')
	projmat =mapper.fit_transform(distmat)
	print 'DONE'
	return projmat
开发者ID:cactuskid,项目名称:Taxonomy_scripts,代码行数:7,代码来源:detectiontree.py

示例2: project_in_2D

def project_in_2D(distance_mat, method='mds'):
  """
  Project SDRs onto a 2D space using manifold learning algorithms
  :param distance_mat: A square matrix with pairwise distances
  :param method: Select method from 'mds' and 'tSNE'
  :return: an array with dimension (numSDRs, 2). It contains the 2D projections
     of each SDR
  """
  seed = np.random.RandomState(seed=3)

  if method == 'mds':
    mds = MDS(n_components=2, max_iter=3000, eps=1e-9,
              random_state=seed,
              dissimilarity="precomputed", n_jobs=1)

    pos = mds.fit(distance_mat).embedding_

    nmds = MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12,
               dissimilarity="precomputed", random_state=seed,
               n_jobs=1, n_init=1)

    pos = nmds.fit_transform(distance_mat, init=pos)
  elif method == 'tSNE':
    tsne = TSNE(n_components=2, init='pca', random_state=0)
    pos = tsne.fit_transform(distance_mat)
  else:
    raise NotImplementedError

  return pos
开发者ID:ywcui1990,项目名称:nupic.research,代码行数:29,代码来源:proj.py

示例3: main

def main():
    args = docopt(__doc__)
    is_mds = args['--mds']

    # load datasets
    digits = load_digits()
    X = digits.data
    y = digits.target
    labels = digits.target_names

    # dimension reduction
    if is_mds:
        model = MDS(n_components=2)
    else:
        model = PCA(n_components=2)
    X_fit = model.fit_transform(X)

    for i in range(labels.shape[0]):
        plt.scatter(X_fit[y == i, 0], X_fit[y == i, 1],
                    color=COLORS[i], label=str(i))

    plt.legend(loc='upper left')
    plt.autoscale()
    plt.grid()
    plt.show()
开发者ID:JackBass,项目名称:ml-algorithms-simple,代码行数:25,代码来源:digits_plot.py

示例4: main

def main():
    digits = load_digits()
    X = digits.data
    y = digits.target
    mds = MDS()
    X_mds = mds.fit_transform(X)
    plot_embedding(X_mds, y)
开发者ID:JackBass,项目名称:ml-algorithms-simple,代码行数:7,代码来源:mds_sklearn_sample.py

示例5: plotMap

def plotMap(maparr, freq, nest, seqs, dbfile, map2d, outfile, plotm='T'):

    #mutli-dimensional scaling
    similarities = euclidean_distances(np.matrix(maparr))
    mds = MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=np.random.RandomState(seed=3), dissimilarity="precomputed", n_jobs=1)
    pos = mds.fit(similarities).embedding_

    #plot attributes
    N = len(pos)
    #size = [20*n for n in freq]
    size = 8000
    color = np.array(range(N))
    
    if str(plotm) == 'T':
    
        #plot MDS
        fig, ax = plt.subplots(figsize=(10,10))
        warnings.filterwarnings("ignore")
        scatter = ax.scatter(np.array(pos[:,0]), np.array(pos[:,1]), c=color, s=size, alpha=0.3, cmap=plt.cm.viridis, marker='s')
        plt.xlabel('Dimension 1', fontsize=20, labelpad=20)
        plt.ylabel('Dimension 2', fontsize=20, labelpad=20)
        #plt.axis([xmin, xmax, ymin, ymax])
        plt.tick_params(labelsize=15, length=14, direction='out', pad=15, top='off', right='off')

        #save figures
        fig.savefig(outfile + '.png', bbox_inches='tight', format='png')
        fig.savefig(outfile + '.pdf', bbox_inches='tight', format='pdf')
        plt.close(fig)
        warnings.resetwarnings()
        
        #write csv file
        writePlotMDS(freq, nest, seqs, dbfile, pos, maparr, map2d, outfile)

    return pos
开发者ID:cbtolson,项目名称:ensemblerna_webserver,代码行数:34,代码来源:PlotVis.py

示例6: labtest_MDS

def labtest_MDS(PID):
    data = [patients[pid]['tests'] for pid in PID]
    X = pp.scale(data)
    mds = MDS(n_components = 2, metric = True, n_init = 4, max_iter = 300, verbose = 0, eps = 0.001, n_jobs = 1, dissimilarity = 'euclidean')
    pos = mds.fit(X).embedding_
    
    return pos
开发者ID:Blaver,项目名称:MyWorkingPlatform,代码行数:7,代码来源:API.py

示例7: scale_plot

 def scale_plot(input_data, data_colors=None, cluster_colors=None,
                cluster_sizes=None, dissimilarity='euclidean', filey=None):
     """ Plot MDS of data and clusters """
     if data_colors is None:
         data_colors = 'r'
     if cluster_colors is None:
         cluster_colors='b'
     if cluster_sizes is None:
         cluster_sizes = 2200
         
     # scale
     mds = MDS(dissimilarity=dissimilarity)
     mds_out = mds.fit_transform(input_data)
     
     with sns.axes_style('white'):
         f=plt.figure(figsize=(14,14))
         plt.scatter(mds_out[n_clusters:,0], mds_out[n_clusters:,1], 
                     s=75, color=data_colors)
         plt.scatter(mds_out[:n_clusters,0], mds_out[:n_clusters,1], 
                     marker='*', s=cluster_sizes, color=cluster_colors,
                     edgecolor='black', linewidth=2)
         # plot cluster number
         offset = .011
         font_dict = {'fontsize': 17, 'color':'white'}
         for i,(x,y) in enumerate(mds_out[:n_clusters]):
             if i<9:
                 plt.text(x-offset,y-offset,i+1, font_dict)
             else:
                 plt.text(x-offset*2,y-offset,i+1, font_dict)
     if filey is not None:
         plt.title(path.basename(filey)[:-4], fontsize=20)
         save_figure(f, filey)
         plt.close()
开发者ID:IanEisenberg,项目名称:Self_Regulation_Ontology,代码行数:33,代码来源:HCA_plots.py

示例8: main

def main():
    # load sample data
    data = np.loadtxt("distmat799.txt", delimiter=",")
    dists = data / np.amax(data)

    # load images
    img_files = [img for img in os.listdir("799_patch") if re.search(r"\.png", img)]

    # mds
    mds = MDS(n_components=2, dissimilarity="precomputed")
    results = mds.fit(dists)

    # plot
    fig, ax = plt.subplots()
    for i, img_file in enumerate(img_files):
        img_file = os.path.join("799_patch", img_file)
        img = read_png(img_file)
        imagebox = OffsetImage(img, zoom=2.0)
        coords = results.embedding_[i, :]
        xy = tuple(coords)
        ab = AnnotationBbox(imagebox, xy)
        ax.add_artist(ab)
    ax.set_xlim(-1.0, 1.0)
    ax.set_ylim(-1.0, 1.0)
    plt.show()
开发者ID:vkarthi46,项目名称:ml-algorithms-simple,代码行数:25,代码来源:mds_sklearn_sample2.py

示例9: plot_cities

def plot_cities():
    #distance_matrix = get_distances()
    cities = 'BOS     CHI     DC      DEN     LA      MIA     NY      SEA     SF'.split()
    distance_matrix = np.array([
        [0   , 963 , 429 , 1949, 2979, 1504, 206 , 2976, 3095],
        [963 , 0   , 671 , 996 , 2054, 1329, 802 , 2013, 2142],
        [429 , 671 , 0   , 1616, 2631, 1075, 233 , 2684, 2799],
        [1949, 996 , 1616, 0   , 1059, 2037, 1771, 1307, 1235],
        [2979, 2054, 2631, 1059, 0   , 2687, 2786, 1131, 379],
        [1504, 1329, 1075, 2037, 2687, 0   , 1308, 3273, 3053],
        [206 , 802 , 233 , 1771, 2786, 1308, 0   , 2815, 2934],
        [2976, 2013, 2684, 1307, 1131, 3273, 2815, 0   , 808],
        [3095, 2142, 2799, 1235, 379 , 3053, 2934, 808 , 0]
        ])

    # assert symmetric
    for (i, j) in [(i, j) for i in range(0, 8) for j in range(0, 8)]:
        try:
            assert(distance_matrix[i][j] == distance_matrix[j][i])
        except AssertionError:
            print((i, j))

    print(distance_matrix)
    mds = MDS(dissimilarity='precomputed')
    mds.fit(distance_matrix)
    print(mds.embedding_)
    for idx, points in enumerate(mds.embedding_):
        plt.plot(points[0], points[1], 'r.')
        plt.text(points[0], points[1], cities[idx])
    plt.show()
    return
开发者ID:RedHenLab,项目名称:CDI,代码行数:31,代码来源:mds_plot.py

示例10: plotFlatClusterGraph

def plotFlatClusterGraph(tf_idf_matrix, clusters, headlines_utf):
    dist = 1 - cosine_similarity(tf_idf_matrix)
    MDS()
    mds = MDS(n_components=2, dissimilarity="precomputed", random_state=1)
    pos = mds.fit_transform(dist)
    xs, ys = pos[:, 0], pos[:, 1]
    cluster_colors = {0: '#FE642E', 1: '#B40404', 2: '#D7DF01', 3: '#01DF01', 4: '#00FFBF', 5: '#2E64FE', 6:'#8904B1', 7:'#FA58F4', 8:'#FE2E9A', 9:'#A4A4A4'}

    #create data frame that has the result of the MDS plus the cluster numbers and titles
    df = pandas.DataFrame(dict(x=xs, y=ys, label=clusters, title=headlines_utf)) 
    groups = df.groupby('label')

    # set up plots
    fig, ax = plt.subplots(figsize=(17, 9)) # set size

    #iterate through groups to layer the plots
    for name, group in groups:
        ax.plot(group.x, group.y, marker='o', linestyle='', ms=12, color=cluster_colors[name], mec='none')
        ax.set_aspect('auto')
        ax.tick_params(axis= 'x', which='both', bottom='off', top='off', labelbottom='off')
        ax.tick_params(axis= 'y', which='both', left='off', top='off', labelleft='off')
        ax.legend(numpoints=1)  #show legend with only 1 point

    #add label in x,y position with the label as the film title
    for t_n in range(len(df)):
        ax.text(df.ix[t_n]['x'], df.ix[t_n]['y'], df.ix[t_n]['title'], size=8)  
    
    plt.savefig('../plots/flat_clusters.png', dpi=400)
开发者ID:rubyagarwal,项目名称:NewsClustering,代码行数:28,代码来源:clusterInfoProcessor.py

示例11: reorder_channels_by_xyz_coord

def reorder_channels_by_xyz_coord(data, channel_names=None):
    """
    :param data: 2-d array in the format [n_samples, n_channels]
    :param channel_names: names of the EEG channels
    :return: data, channel_names permutated accordingly
    """
    # work on transposed view, i.e. [channel, samples]
    data = data.T

    # map channels to 1-d coordinates through MDS
    from sklearn.manifold import MDS
    distances = compute_electrode_distance_matrix()
    mds = MDS(n_components=1, dissimilarity='precomputed')
    projection = mds.fit_transform(distances).reshape(data.shape[0])
    order = np.argsort(projection)
    print mds.stress_
    print order

    # re-order channels
    data = data[order]
    # restore initial axes layout
    data = data.T

    # re-order channel_names
    channel_names = reorder_channel_names(channel_names, order)

    return data, channel_names
开发者ID:Qi0116,项目名称:deepthought,代码行数:27,代码来源:channel_util.py

示例12: embed_two_dimensions

def embed_two_dimensions(data, vectorizer, size=10, n_components=5, colormap='YlOrRd'):
    if hasattr(data, '__iter__'):
        iterable = data
    else:
        raise Exception('ERROR: Input must be iterable')
    import itertools
    iterable_1, iterable_2 = itertools.tee(iterable)
    # get labels
    labels = []
    for graph in iterable_2:
        label = graph.graph.get('id', None)
        if label:
            labels.append(label)

    # transform iterable into sparse vectors
    data_matrix = vectorizer.transform(iterable_1)
    # embed high dimensional sparse vectors in 2D
    from sklearn import metrics
    distance_matrix = metrics.pairwise.pairwise_distances(data_matrix)

    from sklearn.manifold import MDS
    feature_map = MDS(n_components=n_components, dissimilarity='precomputed')
    explicit_data_matrix = feature_map.fit_transform(distance_matrix)

    from sklearn.decomposition import TruncatedSVD
    pca = TruncatedSVD(n_components=2)
    low_dimension_data_matrix = pca.fit_transform(explicit_data_matrix)

    plt.figure(figsize=(size, size))
    embed_dat_matrix_two_dimensions(low_dimension_data_matrix, labels=labels, density_colormap=colormap)
    plt.show()
开发者ID:gianlucacorrado,项目名称:EDeN,代码行数:31,代码来源:embedding.py

示例13: visualize_clusters

def visualize_clusters(tfidf_matrix, vocabulary, km):

    # calcuate the cosine distance between each document
    # this will be used for plotting on a euclidean (2-dimensional) plane.
    dist = 1 - cosine_similarity(tfidf_matrix)
    clusters = km.labels_.tolist()

    # convert two components as we are plotting points in a two-dimensional plane
    # 'precomputed' because we provide a distance matrix
    # we will also specify 'random_state' so the plot is reproducible.
    mds = MDS(n_components=2, dissimilarity="precomputed", random_state=1)
    pos = mds.fit_transform(dist)  # shape (n_components, n_samples)
    xs, ys = pos[:, 0], pos[:, 1]

    # set up colors per clusters using a dict
    cluster_colors = {0: '#1b9e77', 1: '#d95f02', 2: '#7570b3', 3: '#e7298a', 4: '#66a61e', 5: '#99cc00'}

    # set up cluster names using a dict (perhaps using the top terms of each cluster)
    cluster_names = {0: '0',
                     1: '1',
                     2: '2',
                     3: '3',
                     4: '4',
                     5: '5'}

    #create data frame that has the result of the MDS plus the cluster numbers and titles
    df = pd.DataFrame(dict(x=xs, y=ys, label=clusters))

    #group by cluster
    groups = df.groupby('label')


    # set up plot
    fig, ax = plt.subplots(figsize=(17, 9)) # set size
    ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling

    #iterate through groups to layer the plot
    #note that I use the cluster_name and cluster_color dicts with the 'name' lookup to return the appropriate color/label
    for name, group in groups:
        ax.plot(group.x, group.y, marker='o', linestyle='', ms=12,
                label=cluster_names[name], color=cluster_colors[name],
                mec='none')
        ax.set_aspect('auto')
        ax.tick_params(\
            axis= 'x',         # changes apply to the x-axis
            which='both',      # both major and minor ticks are affected
            bottom='off',      # ticks along the bottom edge are off
            top='off',         # ticks along the top edge are off
            labelbottom='off')
        ax.tick_params(\
            axis= 'y',         # changes apply to the y-axis
            which='both',      # both major and minor ticks are affected
            left='off',        # ticks along the bottom edge are off
            top='off',         # ticks along the top edge are off
            labelleft='off')

    ax.legend(numpoints=1)  #show legend with only 1 point

    plt.show() #show the plot
开发者ID:msobrevillac,项目名称:btpucp-clusters,代码行数:59,代码来源:clustering.py

示例14: non_param_multi_dim_scaling

def non_param_multi_dim_scaling(dists, n_dims=3, n_threads=None, metric=True):
    mds = MDS(n_components=n_dims, metric=metric, n_jobs=n_threads,
              dissimilarity='precomputed')
    mds.fit(squareform(dists))
    projs = mds.embedding_
    res = {'stress': mds.stress_,
           'projections': projs}
    return res
开发者ID:JoseBlanca,项目名称:variation,代码行数:8,代码来源:multivariate.py

示例15: generate_cluster_plot_frame

    def generate_cluster_plot_frame(self):
        MDS()
        mds = MDS(n_components=2, dissimilarity="precomputed", random_state=1)
        dist = 1 - cosine_similarity(self.tfidf_matrix)
        pos = mds.fit_transform(dist)
        xs, ys = pos[:,0], pos[:,1]

        self.cluster_plot_frame = pd.DataFrame(dict(x=xs, y=ys, label=self.clusters, chapter=self.chapter_list, book=self.book_list))
开发者ID:Kali89,项目名称:HarryPotterClusters,代码行数:8,代码来源:useful_script.py


注:本文中的sklearn.manifold.MDS类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。