本文整理汇总了Python中sklearn.manifold.Isomap.fit_transform方法的典型用法代码示例。如果您正苦于以下问题:Python Isomap.fit_transform方法的具体用法?Python Isomap.fit_transform怎么用?Python Isomap.fit_transform使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.manifold.Isomap
的用法示例。
在下文中一共展示了Isomap.fit_transform方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: isomap
# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit_transform [as 别名]
def isomap(similarity, euclid=False):
if not euclid:
print('podvod')
model = Isomap(n_neighbors=15)
result = model.fit_transform(similarity)
return result.T
示例2: plotTrajectory
# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit_transform [as 别名]
def plotTrajectory(dfile):
fin = open(dfile)
Vsteps = []
Vtarget = fin.readline().strip().split()
Vtarget = map(float,Vtarget)
Vsteps.append(Vtarget)
for l in fin:
l = l.strip().split()
if len(l) != 26: continue
l = map(float,l)
Vsteps.append(l)
distances = [euclidean(a,Vsteps[0]) for a in Vsteps[1:]]
print len(distances)
_map = plt.get_cmap("winter")
distcolors = _map(distances)
dimred = Isomap(n_components=2)
Vsteps = dimred.fit_transform(Vsteps)
#objective vector
plt.scatter(Vsteps[0,0],Vsteps[0,1],color='red',s=30,marker=(5,1))
#Optimization steps
plt.scatter(Vsteps[1:,0],Vsteps[1:,1],color=distcolors,alpha=0.5)
plt.show()
示例3: plot_3d
# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit_transform [as 别名]
def plot_3d(dataset):
"""TODO: Docstring for plot_3d.
:returns: TODO
"""
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
iso = Isomap(n_components=3)
projected = iso.fit_transform(dataset.data.toarray())
print 'projected: sample: %s, feature: %s'\
% (projected.shape[0], projected.shape[1])
all_scatter = []
colors = cm.rainbow(np.linspace(0, 1, len(dataset.target_names)), alpha=0.5)
for i in range(len(dataset.target_names)):
points = projected[dataset.target==i,:]
cur = ax.scatter(points[:,0], points[:,1], points[:,2],
color=colors[i], edgecolor='k', lw=0.1,
vmin=0, vmax=len(dataset.target_names))
all_scatter.append(cur)
ax.legend(all_scatter, dataset.target_names,
loc='lower left', scatterpoints=1)
plt.savefig('isomap3d', dpi=500)
plt.show()
return True
示例4: iso_map
# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit_transform [as 别名]
def iso_map(data, target, target_names):
iso = Isomap(n_components=2)
data_projected = iso.fit_transform(data)
formatter = plt.FuncFormatter(lambda i, *args:target_names[int(i)])
plt.figure(figsize=(8, 8))
plt.scatter(data_projected[:, 0], data_projected[:, 1], c=target,edgecolor='none', alpha=0.5, cmap=plt.cm.get_cmap('rainbow', len(target_names)));
plt.colorbar(ticks=sorted(list(set(target))), format=formatter)
#plt.clim(-200, 0)
return iso, data_projected
示例5: embedDistanceMatrix
# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit_transform [as 别名]
def embedDistanceMatrix(dmatDf, method='kpca', n_components=2, **kwargs):
"""Two-dimensional embedding of sequence distances in dmatDf,
returning Nx2 x,y-coords: tsne, isomap, pca, mds, kpca, sklearn-tsne"""
if isinstance(dmatDf, pd.DataFrame):
dmat = dmatDf.values
else:
dmat = dmatDf
if method == 'tsne':
xy = tsne.run_tsne(dmat, no_dims=n_components, perplexity=kwargs['perplexity'])
elif method == 'isomap':
isoObj = Isomap(n_neighbors=10, n_components=n_components)
xy = isoObj.fit_transform(dmat)
elif method == 'mds':
mds = MDS(n_components=n_components,
max_iter=3000,
eps=1e-9,
random_state=15,
dissimilarity="precomputed",
n_jobs=1)
xy = mds.fit(dmat).embedding_
rot = PCA(n_components=n_components)
xy = rot.fit_transform(xy)
elif method == 'pca':
pcaObj = PCA(n_components=None)
xy = pcaObj.fit_transform(dmat)[:, :n_components]
elif method == 'kpca':
pcaObj = KernelPCA(n_components=dmat.shape[0], kernel='precomputed', eigen_solver='dense')
try:
gram = dist2kernel(dmat)
except:
print('Could not convert dmat to kernel for KernelPCA; using 1 - dmat/dmat.max() instead')
gram = 1 - dmat / dmat.max()
xy = pcaObj.fit_transform(gram)[:, :n_components]
elif method == 'lle':
lle = manifold.LocallyLinearEmbedding(n_neighbors=30, n_components=n_components, method='standard')
xy = lle.fit_transform(dist)
elif method == 'sklearn-tsne':
tsneObj = TSNE(n_components=n_components, metric='precomputed', random_state=0, perplexity=kwargs['perplexity'])
xy = tsneObj.fit_transform(dmat)
elif method == 'umap':
umapObj = umap.UMAP(n_components=n_components, metric='precomputed', **kwargs)
xy = umapObj.fit_transform(dmat)
else:
print('Method unknown: %s' % method)
return
assert xy.shape[0] == dmatDf.shape[0]
xyDf = pd.DataFrame(xy[:, :n_components], index=dmatDf.index, columns=np.arange(n_components))
if method == 'kpca':
"""Not sure how negative eigenvalues should be handled here, but they are usually
small so it shouldn't make a big difference"""
setattr(xyDf, 'explained_variance_', pcaObj.lambdas_[:n_components]/pcaObj.lambdas_[pcaObj.lambdas_>0].sum())
return xyDf
示例6: isomap
# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit_transform [as 别名]
def isomap(self, data):
print 'Isomap neighbours :', self.parameters["n_neighbors"]
print 'Isomap components, ie final number of coordinates :', self.k
k_means_n_clusters=self.parameters['k_means_n_clusters']
isomap_params = dict(self.parameters)
del isomap_params["k_means_n_clusters"]
m = Isomap(neighbors_algorithm = 'kd_tree',**isomap_params)#eigen_solver='auto', tol=0, path_method='auto', neighbors_algorithm='kd_tree')
x = m.fit_transform(data)
error=m.reconstruction_error()
geod_d = m.dist_matrix_.flatten()
new_euclid_d = cdist(x, x, metric='euclidean').flatten()
corr=1- pearsonr(geod_d, new_euclid_d)[0]**2
new_data = x
print self.parameters
return self.batch_kmeans(new_data, parameters = dict(zip(params["mini-batchk-means"], [k_means_n_clusters, 1000, 500, 1000, 'k-means++', 5])))
示例7: isomap
# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit_transform [as 别名]
def isomap(file_name, dimension, num_neighbors, label):
balls = np.loadtxt(file_name)
matrix = balls[:, 0:dimension]
new_matrix = convert_angles_to_cos_sin(matrix)
imap = Isomap(n_neighbors=num_neighbors, n_components=2, eigen_solver='auto', tol=0, max_iter=None,
path_method='auto', neighbors_algorithm='auto')
transformed_matrix = imap.fit_transform(new_matrix)
ball_coords = np.zeros((balls.shape[0], dimension+3))
for i in xrange(balls.shape[0]):
ball_coords[i, 0:dimension] = balls[i, 0:dimension].tolist()
ball_coords[i, dimension:dimension+2] = transformed_matrix[i]
if label == 'cluster':
ball_coords[i, dimension+2] = balls[i, dimension].tolist()
elif label == 'eq':
ball_coords[i, dimension+2] = (-0.0019872041*300*np.log(abs(balls[i, dimension+1]))).tolist()
elif label == 'committor':
ball_coords[i, dimension+2] = (balls[i, dimension+2]/abs(balls[i, dimension+1])).tolist()
print ' '.join([str(x) for x in ball_coords[i, :]])
示例8: outputBin
# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit_transform [as 别名]
def outputBin(data, ctrlSize,nbPheno, lPheno, binSize, sigma, nbDim=2, nbNeighbours=20):
m = Isomap(n_neighbors=nbNeighbours, n_components=nbDim, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='kd_tree')
D = m.fit_transform(data)
ctrl = D[:ctrlSize]
ctrlTree = KDTree(ctrl, leafsize=10)
length=ctrlSize
mini = np.amin(D, 0); maxi=np.amax(D, 0);
nbPointsX = int((maxi[0]-mini[0])/float(binSize))+1
nbPointsY = int((maxi[1]-mini[1])/float(binSize))+1
result = np.zeros(shape=(nbPheno, nbPointsX, nbPointsY))
denomCtrl = np.zeros(shape=(nbPointsX, nbPointsY))
for pointX, pointY in product(range(nbPointsX), range(nbPointsY)):
x=mini[0]+(pointX+0.5)*binSize; y=mini[1]+(pointY+0.5)*binSize
ctrldou, ctrli = ctrlTree.query((x, y), ctrlSize, distance_upper_bound=binSize/sqrt(2))
if min(ctrldou)<100:
ctrlPoint = filter(lambda t: t[1]<ctrl.shape[0] and np.all(np.abs(ctrl[t[1]]-(x, y))<(binSize/2.0, binSize/2.0)), zip(ctrldou, ctrli))
for distance, cPoint in ctrlPoint:
denomCtrl[pointX, pointY]+=dist((x,y), ctrl[cPoint], sigma)
for ifilm in range(nbPheno):
print 'film ', ifilm
pheno = D[length:length+lPheno[ifilm]]
phenoTree = KDTree(pheno, leafsize=10)
for pointX, pointY in product(range(nbPointsX), range(nbPointsY)):
x=mini[0]+(pointX+0.5)*binSize; y=mini[1]+(pointY+0.5)*binSize
denom=denomCtrl[pointX, pointY]
phenodou, phenoi=phenoTree.query((x, y), data.shape[0]-ctrlSize, distance_upper_bound=binSize/sqrt(2))
if min(phenodou)<100:
phenoPoint =filter(lambda t: t[1]<pheno.shape[0] and np.all(np.abs(pheno[t[1]]-(x, y))<(binSize/2.0, binSize/2.0)), zip(phenodou, phenoi))
for distance, pPoint in phenoPoint:
local = dist((x,y), pheno[pPoint], sigma)
result[ifilm, pointX, pointY]+=local; denom+=local
length+=lPheno[ifilm]
if denom>0:result[ifilm, pointX, pointY]/=denom
plotMovies('/media/lalil0u/New/workspace2/Tracking/images', result, 'pattern_b{}_s{}'.format(binSize, sigma))
return result
示例9: plot_2d
# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit_transform [as 别名]
def plot_2d(dataset):
"""TODO: Docstring for plot_2d.
:returns: TODO
"""
iso = Isomap(n_components=2)
projected = iso.fit_transform(dataset.data.toarray())
print 'projected: sample: %s, feature: %s'\
% (projected.shape[0], projected.shape[1])
all_scatter = []
colors = cm.rainbow(np.linspace(0, 1, len(dataset.target_names)), alpha=0.5)
for i in range(len(dataset.target_names)):
points = projected[dataset.target==i,:]
cur = plt.scatter(points[:,0], points[:,1], color=colors[i],
edgecolor='k', lw=0.6,
vmin=0, vmax=len(dataset.target_names))
all_scatter.append(cur)
plt.legend(all_scatter, dataset.target_names,
loc='lower left', scatterpoints=1)
plt.clim(-0.5, 9.5)
plt.savefig('isomap2d', dpi=500)
示例10: embedDistanceMatrix
# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit_transform [as 别名]
def embedDistanceMatrix(dist,method='tsne'):
"""MDS embedding of sequence distances in dist, returning Nx2 x,y-coords: tsne, isomap, pca, mds, kpca"""
if method == 'tsne':
xy = tsne.run_tsne(dist, no_dims=2)
#xy=pytsne.run_tsne(adist,no_dims=2)
elif method == 'isomap':
isoObj = Isomap(n_neighbors=10, n_components=2)
xy = isoObj.fit_transform(dist)
elif method == 'mds':
mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=15,
dissimilarity="precomputed", n_jobs=1)
xy = mds.fit(dist).embedding_
rot = PCA(n_components=2)
xy = rot.fit_transform(xy)
elif method == 'pca':
pcaObj = PCA(n_components=2)
xy = pcaObj.fit_transform(1-dist)
elif method == 'kpca':
pcaObj = KernelPCA(n_components=2, kernel='precomputed')
xy = pcaObj.fit_transform(1-dist)
elif method == 'lle':
lle = manifold.LocallyLinearEmbedding(n_neighbors=30, n_components=2, method='standard')
xy = lle.fit_transform(dist)
return xy
示例11: range
# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit_transform [as 别名]
X_pca = pca.fit_transform(T)
'''
# No, the accuracy levels off at the same value as before from 7 components onwards.
# If you are not, then forget about PCA entirely, unless you want to visualize your data. However if you are able to get a higher score,
# then be *sure* keep that figure in mind, and comment out all the PCA code.
# In the same spot, run Isomap on the data, before sending it to the train / test split. Manually experiment with every inclusive
# combination of n_neighbors between 2 and 5, and n_components between 4 and 6. Are you able to get a better accuracy?
from sklearn.manifold import Isomap
# You're going to have to write nested for loops that wrap around everything from here on down!
best_score = 0
for k in range(2, 6):
for l in range(4, 7):
iso = Isomap(n_neighbors = k, n_components = l)
X_iso = iso.fit_transform(T)
# Perform a train/test split. 30% test group size, with a random_state equal to 7.
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X_iso, y, test_size = 0.3, random_state = 7)
# Create a SVC classifier. Don't specify any parameters, just leave everything as default.
# Fit it against your training data and then score your testing data.
from sklearn.svm import SVC
# Lines below are for the first lab question:
'''
model = SVC()
model.fit(X_train, y_train)
score = model.score(X_test, y_test)
print score
'''
示例12: shuffle
# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit_transform [as 别名]
X_train.append(XX_train[i])
y_train.append(yy_train[i])
num_samples_to_plot = 5000
X_train, y_train = shuffle(X_train, y_train)
X_train, y_train = X_train[:num_samples_to_plot], y_train[:num_samples_to_plot] # lets subsample a bit for a first impression
for digit in mytargets:
instances=[i for i in y_train if i==digit]
print "Digit",digit,"appears ",len(instances), "times"
transformer = Isomap(n_neighbors = 10, n_components = 2)
fig, plot = plt.subplots()
fig.set_size_inches(50, 50)
plt.prism()
X_transformed = transformer.fit_transform(X_train)
plot.scatter(X_transformed[:, 0], X_transformed[:, 1], c=y_train)
plot.set_xticks(())
plot.set_yticks(())
count=0;
plt.tight_layout()
plt.suptitle("Isomap for MNIST digits ")
for label , x, y in zip(y_train, X_transformed[:, 0], X_transformed[:, 1]):
#Lets annotate every 1 out of 200 samples, otherwise graph will be cluttered with anotations
if count % 200 == 0:
plt.annotate(str(int(label)),xy=(x,y), color='black', weight='normal',size=10,bbox=dict(boxstyle="round4,pad=.5", fc="0.8"))
count = count + 1
#plt.savefig("mnist_pca.png")
plt.show()
示例13: Isomap
# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit_transform [as 别名]
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.manifold import Isomap
resourceFolder = '../res/'
dataframe = pd.read_csv(resourceFolder + 'EnergyMix.csv')
df = dataframe.loc[:,['Oil','Gas','Coal','Nuclear','Hydro']]
print df
imap = Isomap()
df_reduced = imap.fit_transform(df)
print df_reduced
plt.plot(df_reduced[:,0],df_reduced[:,1],'.')
for index, country in enumerate(dataframe["Country"]):
plt.text(df_reduced[index,0], df_reduced[index,1], country)
plt.savefig('../doc/EnergyMix_Reduced.png')
plt.show()
示例14: Isomap
# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit_transform [as 别名]
from sklearn.manifold import Isomap
iso = Isomap(n_components=2)
digits_isomap = iso.fit_transform(digits.data)
plt.figure(figsize=(10, 10))
plt.xlim(digits_isomap[:, 0].min(), digits_isomap[:, 0].max() + 1)
plt.ylim(digits_isomap[:, 1].min(), digits_isomap[:, 1].max() + 1)
for i in range(len(digits.data)):
# actually plot the digits as text instead of using scatter
plt.text(digits_isomap[i, 0], digits_isomap[i, 1], str(digits.target[i]),
color = colors[digits.target[i]],
fontdict={'weight': 'bold', 'size': 9})
示例15: enumerate
# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit_transform [as 别名]
for i,s in enumerate(spectra):
spec= s.spectrum
wavsi = s.wavelength()
intpol = spi.interp1d(wavsi,spec,bounds_error=False,fill_value = 0.)
spec = intpol(wavs)
spec/=spec.max()
data[i]= spec
#print data
iso = Isomap(k,n)
#iso.fit(data)
print "projecting and fitting: "
proj = iso.fit_transform(data)
print "proj.shape"
print proj.shape
fig,axes = plt.subplots(2,3)
print proj[:,0]
print proj[:,1]
print proj
for prop,nprop,ax in zip(properties,nproperites,axes.flatten()):
ax.set_title(nprop)
ax.scatter(proj[:,0],proj[:,1],c=prop)