当前位置: 首页>>代码示例>>Python>>正文


Python Isomap.fit方法代码示例

本文整理汇总了Python中sklearn.manifold.Isomap.fit方法的典型用法代码示例。如果您正苦于以下问题:Python Isomap.fit方法的具体用法?Python Isomap.fit怎么用?Python Isomap.fit使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.manifold.Isomap的用法示例。


在下文中一共展示了Isomap.fit方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: dimension_reduce

# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit [as 别名]
def dimension_reduce():
    ''' This compares a few different methods of
    dimensionality reduction on the current dataset.
    '''
    pca = PCA(n_components=2)                             # initialize a dimensionality reducer
    pca.fit(digits.data)                                  # fit it to our data
    X_pca = pca.transform(digits.data)                    # apply our data to the transformation
    plt.subplot(1, 3, 1)
    plt.scatter(X_pca[:, 0], X_pca[:, 1], c=digits.target)# plot the manifold
    
    se = SpectralEmbedding()
    X_se = se.fit_transform(digits.data)
    plt.subplot(1, 3, 2)
    plt.scatter(X_se[:, 0], X_se[:, 1], c=digits.target)
    
    isomap = Isomap(n_components=2, n_neighbors=20)
    isomap.fit(digits.data)
    X_iso = isomap.transform(digits.data)
    plt.subplot(1, 3, 3)
    plt.scatter(X_iso[:, 0], X_iso[:, 1], c=digits.target)
    plt.show()

    plt.matshow(pca.mean_.reshape(8, 8))                  # plot the mean components
    plt.matshow(pca.components_[0].reshape(8, 8))         # plot the first principal component
    plt.matshow(pca.components_[1].reshape(8, 8))         # plot the second principal component
    plt.show()
开发者ID:bashwork,项目名称:common,代码行数:28,代码来源:digits.py

示例2: ML

# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit [as 别名]
    def ML( self ):
        data = self.data.values[ :, :-3 ]
        scaler = MinMaxScaler()
        #scaler = StandardScaler()
        X = scaler.fit_transform( data )
        #X = data

        isomap = Isomap( n_components = 2 )
        isomap.fit( X )
        #print pca.explained_variance_ratio_
        import pdb; pdb.set_trace()
开发者ID:jjardel,项目名称:bd-bq,代码行数:13,代码来源:dealerML.py

示例3: __init__

# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit [as 别名]
class FloorplanEstimator:
    """
    Simple estimator for rough floorplans
    """
    def __init__(self):
        """
        Instantiate floorplan estimator
        """
        self.dimred = Isomap(n_neighbors=25, n_components=2)
        self._fingerprints = None
        self._label = None

    def fit(self, fingerprints, label):
        """
        Estimate floorplan from labeled fingerprints
        :param fingerprints: list of fingerprints
        :param label: list of corresponding labels
        """
        self.dimred.fit(fingerprints)
        self._fingerprints = fingerprints
        self._label = label

    def transform(self, fingerprints):
        """
        Get x,y coordinates of fingerprints on floorplan
        :param fingerprints: list of fingerprints
        :return: list of [x,y] coordinates
        """
        return self.dimred.transform(fingerprints)

    def draw(self):
        """
        Draw the estimated floorplan in the current figure
        """
        xy = self.dimred.transform(self._fingerprints)

        x_min, x_max = xy[:,0].min(), xy[:,0].max()
        y_min, y_max = xy[:,1].min(), xy[:,1].max()
        xx, yy = np.meshgrid(np.arange(x_min, x_max, 1.0),
                             np.arange(y_min, y_max, 1.0))
        clf = RadiusNeighborsClassifier(radius=3.0, outlier_label=0)
        clf.fit(xy, self._label)
        label = clf.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)

        plt.pcolormesh(xx, yy, label)
        plt.scatter(xy[:,0], xy[:,1], c=self._label, vmin=0)
开发者ID:tomvand,项目名称:fingerprint-localization,代码行数:48,代码来源:fpFloorplan.py

示例4: compute_iso_map

# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit [as 别名]
 def compute_iso_map(self, original_features):
   feature_matrix = original_features.drop('file', 1).as_matrix()
   feature_matrix = np.nan_to_num(feature_matrix)
   
   dimen_reductor = Isomap(n_components=self.n_components)
   
   full_size = feature_matrix.shape[0]
   train_size = int(self.ratio * full_size)
   
   row_indices = list(range(full_size))
   feature_training_indices = np.random.choice(row_indices, size = train_size)
   training_feature_matrix = feature_matrix[feature_training_indices, :]
   
   dimen_reductor.fit(training_feature_matrix)    
   reduced_features = dimen_reductor.transform(feature_matrix)
   
   reduced_normalized_features = reduced_features - reduced_features.min(axis=0)
   reduced_normalized_features /= reduced_normalized_features.max(axis=0)
   
   return reduced_normalized_features
开发者ID:tcoatale,项目名称:cnn_framework,代码行数:22,代码来源:isomap_extractor.py

示例5: mult_scl

# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit [as 别名]
def mult_scl(X, labels):
    print('labels:')
    for i, label in zip(range(1, len(labels) + 1), labels):
        print('{}: {}'.format(i, label))

    isomap = Isomap()
    points = isomap.fit(np.nan_to_num(X)).embedding_
    f, (ax1, ax2, ax3) = plt.subplots(1, 3)
    plot_location(labels, ax3)
    ax1.scatter(points[:, 0], points[:, 1], s=20, c='r')
    ax1.set_title('Isomap')
    add_labels(labels, points, ax1)

    mds = MDS()
    points = mds.fit(np.nan_to_num(X)).embedding_
    ax2.scatter(points[:, 0], points[:, 1], s=20, c='g')
    ax2.set_title('MDS')
    add_labels(labels, points, ax2)

    plt.show()
开发者ID:Sandy4321,项目名称:sml_project_2,代码行数:22,代码来源:mds.py

示例6: isomap

# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit [as 别名]
    def isomap(self, n_components=2, n_neighbors=3, show=False):
        """
        Calculates lower dimention coordinates using the isomap algorithm.

        :param n_components: dimentionality of the reduced space
        :type n_components: int, optional

        :param n_neighbors: Used by isomap to determine the number of neighbors
            for each point. Large neighbor size tends to produce a denser map.
        :type n_neighbors: int, optional

        :param show: Shows the calculated coordinates if true.
        :type show: boolean, optional
        """

        model = Isomap(n_components=n_components, n_neighbors=n_neighbors)
        self.pos  = model.fit(self.dismat).embedding_

        if show:
            return self.pos
开发者ID:HANNATH,项目名称:vsm,代码行数:22,代码来源:manifold.py

示例7: isoMap

# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit [as 别名]
def isoMap(X, y):
	im = Isomap(n_components = 1, eigen_solver = "dense", n_neighbors = 20)
	im.fit(X)
	transformX = im.transform(X)
	return transformX
开发者ID:BIDS-collaborative,项目名称:EDAM,代码行数:7,代码来源:predict.py

示例8: PCA

# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit [as 别名]
#maxabsscaler = pp.MaxAbsScaler()
#maxabsscaler.fit(X)
#X = maxabsscaler.transform(X)
#print('MaxAbsScaler\n========')

#X = pp.normalize(X)
#print('normalizer\n========')

# TODO: Use PCA to reduce noise, n_components 4-14

nc = 5
#pca = PCA(n_components=nc)
#pca.fit(X)
#X = pca.transform(X)
#print('PCA: ', nc)

# Use Isomap to reduce noise, n_neighbors 2-5
nn = 4
im = Isomap(n_neighbors=nn, n_components=nc)
im.fit(X)
X = im.transform(X)
print('Isomap: ',nn, ' comp: ', nc)

# TODO: train_test_split 30% and random_state=7

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=7)

# TODO: Create an SVC, train and score against defaults
result = findMaxSVC()
print(result['score'])
开发者ID:griblik,项目名称:scratch,代码行数:32,代码来源:assignment3.py

示例9: PCA

# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit [as 别名]
scaler = preprocessing.StandardScaler() #0.966101694915

scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)

#pcaComponent = 4
#pca = PCA(n_components=pcaComponent)
#pca.fit(X_train)
#X_train = pca.transform(X_train)
#X_test = pca.transform(X_test)

neighbors = 2
components = 4
isomap = Isomap(n_neighbors=neighbors, n_components=components)
isomap.fit(X_train)
X_train = isomap.transform(X_train)
X_test = isomap.transform(X_test)

#svc = SVC()
#svc.fit(X_train, y_train)
#print svc.score(X_test, y_test)

best_score = 0
best_C = 0
best_gamma = 0
for C in np.arange(0.05, 2.05, 0.05):
    for gamma in np.arange(0.001, 1.001, 0.001):
        svc = SVC(C = C, gamma = gamma)
        svc.fit(X_train, y_train)
        score = svc.score(X_test, y_test)
开发者ID:anhualin,项目名称:MyLearning,代码行数:33,代码来源:ALi.py

示例10:

# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit [as 别名]
            samples.append(img.reshape(-1))
            color_sample.append('r')
#
# TODO: Convert the list to a dataframe
#
# .. your code here .. 
df_images = pd.DataFrame(samples)
#df_images_t = df_images.transpose()

#
# TODO: Implement Isomap here. Reduce the dataframe df down
# to three components, using K=6 for your neighborhood size
#
# .. your code here .. 
iso_bear=Isomap(n_components=3,n_neighbors=6)
iso_bear.fit(df_images)
T_iso_bear = iso_bear.transform(df_images)

#
# TODO: Create a 2D Scatter plot to graph your manifold. You
# can use either 'o' or '.' as your marker. Graph the first two
# isomap components
#
# .. your code here .. 
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title('Manifold Scatterplot')
ax.set_xlabel('Component: {0}'.format(0))
ax.set_ylabel('Component: {0}'.format(1))
ax.scatter(T_iso_bear[:,0],T_iso_bear[:,1], marker='.',alpha=0.7, c=color_sample)
开发者ID:ilvitorio,项目名称:EdX---Python-Chapt---4,代码行数:32,代码来源:assignment5.py

示例11: PCA

# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit [as 别名]
    if basic_plots:
        ax = pp.subplot(2, 1, 1)
        train.describe()[1:].plot(legend=False, ax=ax)
        pp.title("Description of training data.")

        ax = pp.subplot(2, 1, 2)
        train.loc[:,:5].plot(legend=False, ax=ax)
        pp.title("First 5 series plotted.")

        pp.show()

    if do_pca:
        x = train.values
        pca = PCA(n_components=3)
        pca.fit(x)
        y = pca.transform(x)
        print 'Orig shape: ', x.shape, 'New shape: ', y.shape

        pp.scatter(y[:,0], y[:,1], c=target.values)
        pp.show()

    if do_isomap:
        x = train.values
        from sklearn.manifold import Isomap
        isomap = Isomap(n_components=2, n_neighbors=20)
        isomap.fit(x)
        y = isomap.transform(x)

        pp.scatter(y[:,0], y[:,1], c=target.values)
        pp.show()
开发者ID:petermoran,项目名称:kaggle,代码行数:32,代码来源:explore.py

示例12: scoreFromPvalues

# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit [as 别名]
    print 'offset1: '  , offset1 
    print 'offset2: '  , offset2 
    
    #HERE structures must have only atoms of selected chain
    TM_align = rcu.TM_aligned_residues(pdb1,pdb2,offset1, offset2)
    
    
    individualjammings1 = np.asarray(get_permutations(nj1['individual'],TM_align['alignedList1']))
    individualjammings2 = np.asarray(get_permutations(nj2['individual'],TM_align['alignedList2']))
    
    PValsScore = scoreFromPvalues(individualjammings1,individualjammings2)
    print 'PValsScore: ', PValsScore
    
    
    clf = Isomap(n_components=2)#Isomap(n_components=2)
    clf.fit(individualjammings1)
    ij1 = clf.transform(individualjammings1)
    ij2 = clf.transform(individualjammings2)
    print ij1
    f, (ax1, ax2,ax3) = pl.subplots(1,3, sharex=True, sharey=True)
    pl.ioff()
    pl.title('ensemble correlation: %.4f'%PValsScore)
    #pl.subplot(1,2,1)
    ax1.scatter(ij1[:,0],ij1[:,1],marker='o',s=45,facecolor='0.6',edgecolor='r')

    #pl.subplot(1,2,2)
    ax2.scatter(ij2[:,0],ij2[:,1],marker='o',s=45,facecolor='0.6',edgecolor='r')
    ax3.scatter(ij2[:,0],ij2[:,1],marker='o',s=25,facecolor='y',edgecolor='0.05',alpha=0.6)
    ax3.scatter(ij1[:,0],ij1[:,1],marker='o',s=25,facecolor='b',edgecolor='0.05',alpha=0.5)
    ax1.axes.get_xaxis().set_visible(False)
    ax2.axes.get_xaxis().set_visible(False)
开发者ID:RicardoCorralC,项目名称:neoj,代码行数:33,代码来源:permutationDistance.py

示例13: preprocess

# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit [as 别名]
    return features_train_transformed, lables, vectorizer, selector, le, features

# nFeatures = np.arange(50, 1000, 50)
nISOMAP = np.arange(20, 200, 20)

data = {}

for k in nISOMAP:

    features, labels, vectorizer, selector, le, features_data = preprocess("pkl/article_2_people.pkl", "pkl/lable_2_people.pkl")
    features_train, features_test, labels_train, labels_test = cross_validation.train_test_split(features, labels, test_size=0.1, random_state=42)

    t0 = time()
    iso = Isomap(n_neighbors=15, n_components=k, eigen_solver='auto')
    iso.fit(features_train)
    print ("Dimension Reduction time:", round(time()-t0, 3), "s")


    features_train = iso.transform(features_train)
    features_test = iso.transform(features_test)

    for name, clf in [
        ('AdaBoostClassifier', AdaBoostClassifier(algorithm='SAMME.R')),
        ('BernoulliNB', BernoulliNB(alpha=1)),
        ('GaussianNB', GaussianNB()),
        ('DecisionTreeClassifier', DecisionTreeClassifier(min_samples_split=100)),
        ('KNeighborsClassifier', KNeighborsClassifier(n_neighbors=50, algorithm='ball_tree')),
        ('RandomForestClassifier', RandomForestClassifier(min_samples_split=100)),
        ('SVC', SVC(kernel='linear', C=1))
    ]:
开发者ID:dikien,项目名称:Machine-Learning-Newspaper,代码行数:32,代码来源:step4_analysis_supervised_4(isomap).py

示例14: PCA

# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit [as 别名]
# title is your chart title
# x is the principal component you want displayed on the x-axis, Can be 0 or 1
# y is the principal component you want displayed on the y-axis, Can be 1 or 2
#
# .. your code here ..
from sklearn.decomposition import PCA
pca = PCA(n_components=3)
pca.fit(df)
T = pca.transform(df)
Plot2D(T, "PCA 1 2", 1, 2)

#
# TODO: Implement Isomap here. Reduce the dataframe df down
# to THREE components. Once you've done that, call Plot2D using
# the first two components.
#
# .. your code here ..
from sklearn.manifold import Isomap
imap = Isomap(n_neighbors=8, n_components=3)
imap.fit(df)
T2 = imap.transform(df)
Plot2D(T2, "Isomap", 1, 2)
#
# TODO: If you're up for a challenge, draw your dataframes in 3D
# Even if you're not, just do it anyway.
#
# .. your code here ..


plt.show()
开发者ID:anhualin,项目名称:MyLearning,代码行数:32,代码来源:assignment4.py

示例15: main

# 需要导入模块: from sklearn.manifold import Isomap [as 别名]
# 或者: from sklearn.manifold.Isomap import fit [as 别名]
def main():
    #Load the dataset from Matlab
    data = sio.loadmat('baseline2.mat')
    n_train = int(data['n_train'])
    n_test = int(data['n_test'])
    train_x = np.array(data['train_x'])
    train_t = np.array(data['train_t']).reshape(n_train)
    test_x = np.array(data['test_x'])
    test_t = np.array(data['test_t']).reshape(800)
    X_indices = np.arange(train_x.shape[-1])

    #SVM Fitting
    C = [-10,5,10]
    G = [-10,5,10]
    CF = [-10,5,10]

    # Plot the cross-validation score as a function of percentile of features
    NG = [10,20,50,100,200]
    components = (10,20,50,100,200)
    scores = list()
    svcs = list()
    isos = list()

    for cc in components:
        for nn in NG:
            best_c = 0
            best_g = 0
            best_cf = 0
            best_iso = None
            max_score = -np.inf

            iso = Isomap(n_components=cc, n_neighbors=nn)
            iso.fit(train_x)
            train = iso.transform(train_x)

            for c in C:
                for g in G:
                    for cf in CF:
                        #Find best C, gamma
                        svc = svm.SVC(C=2**c, gamma=2**g, coef0=2**cf, degree=3, kernel='poly',max_iter=1000000)
                        this_scores = cross_validation.cross_val_score(svc, train, train_t, n_jobs=-1, cv=5, scoring='accuracy')
                        mean_score = sum(this_scores)/len(this_scores)

                        print("C: "+str(c)+" G: "+str(g)+" CMPS: "+str(cc)+" A: "+str(mean_score) + " CF: " +str(cf) + "N: "+str(nn))

                        if mean_score > max_score:
                            max_score = mean_score
                            best_svm = svc
                            best_iso = iso
            svcs.append(best_svm)
            isos.append(best_iso)
            scores.append(max_score)

    m_ind =  scores.index(max(scores))
    best_s = svcs[m_ind]
    iso = isos[m_ind]

    # Test final model
    test = iso.transform(test_x)
    train = iso.transform(train_x)
    best_s.fit(train,train_t)

    pred = best_s.predict(test)
    sio.savemat('predicted_iso.mat',dict(x=range(800),pred_t=pred))

    final_score = best_s.score(test,test_t)
    print(best_s)
    print("Final Accuracy: "+str(final_score))
    print(scores)
开发者ID:Sessa93,项目名称:MLProject,代码行数:71,代码来源:isomap.py


注:本文中的sklearn.manifold.Isomap.fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。