当前位置: 首页>>代码示例>>Python>>正文


Python ElasticNet.score方法代码示例

本文整理汇总了Python中sklearn.linear_model.coordinate_descent.ElasticNet.score方法的典型用法代码示例。如果您正苦于以下问题:Python ElasticNet.score方法的具体用法?Python ElasticNet.score怎么用?Python ElasticNet.score使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.linear_model.coordinate_descent.ElasticNet的用法示例。


在下文中一共展示了ElasticNet.score方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _test_sparse_enet_not_as_toy_dataset

# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import score [as 别名]
def _test_sparse_enet_not_as_toy_dataset(alpha, fit_intercept, positive):
    n_samples, n_features, max_iter = 100, 100, 1000
    n_informative = 10

    X, y = make_sparse_data(n_samples, n_features, n_informative,
                            positive=positive)

    X_train, X_test = X[n_samples / 2:], X[:n_samples / 2]
    y_train, y_test = y[n_samples / 2:], y[:n_samples / 2]

    s_clf = ElasticNet(alpha=alpha, l1_ratio=0.8, fit_intercept=fit_intercept,
                       max_iter=max_iter, tol=1e-7, positive=positive,
                       warm_start=True)
    s_clf.fit(X_train, y_train)

    assert_almost_equal(s_clf.dual_gap_, 0, 4)
    assert_greater(s_clf.score(X_test, y_test), 0.85)

    # check the convergence is the same as the dense version
    d_clf = ElasticNet(alpha=alpha, l1_ratio=0.8, fit_intercept=fit_intercept,
                       max_iter=max_iter, tol=1e-7, positive=positive,
                       warm_start=True)
    d_clf.fit(X_train.todense(), y_train)

    assert_almost_equal(d_clf.dual_gap_, 0, 4)
    assert_greater(d_clf.score(X_test, y_test), 0.85)

    assert_almost_equal(s_clf.coef_, d_clf.coef_, 5)
    assert_almost_equal(s_clf.intercept_, d_clf.intercept_, 5)

    # check that the coefs are sparse
    assert_less(np.sum(s_clf.coef_ != 0.0), 2 * n_informative)
开发者ID:2011200799,项目名称:scikit-learn,代码行数:34,代码来源:test_sparse_coordinate_descent.py

示例2: test_sparse_enet_not_as_toy_dataset

# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import score [as 别名]
def test_sparse_enet_not_as_toy_dataset():
    n_samples, n_features, max_iter = 100, 100, 1000
    n_informative = 10

    X, y = make_sparse_data(n_samples, n_features, n_informative)

    X_train, X_test = X[n_samples / 2:], X[:n_samples / 2]
    y_train, y_test = y[n_samples / 2:], y[:n_samples / 2]

    s_clf = SparseENet(alpha=0.1, rho=0.8, fit_intercept=False,
                       max_iter=max_iter, tol=1e-7)
    s_clf.fit(X_train, y_train)
    assert_almost_equal(s_clf.dual_gap_, 0, 4)
    assert s_clf.score(X_test, y_test) > 0.85

    # check the convergence is the same as the dense version
    d_clf = DenseENet(alpha=0.1, rho=0.8, fit_intercept=False,
                      max_iter=max_iter, tol=1e-7)
    d_clf.fit(X_train, y_train)
    assert_almost_equal(d_clf.dual_gap_, 0, 4)
    assert d_clf.score(X_test, y_test) > 0.85

    assert_almost_equal(s_clf.coef_, d_clf.coef_, 5)

    # check that the coefs are sparse
    assert np.sum(s_clf.coef_ != 0.0) < 2 * n_informative
开发者ID:Yangqing,项目名称:scikit-learn,代码行数:28,代码来源:test_coordinate_descent.py

示例3: _test_sparse_enet_not_as_toy_dataset

# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import score [as 别名]
def _test_sparse_enet_not_as_toy_dataset(alpha, fit_intercept, positive):
    n_samples, n_features, max_iter = 100, 100, 1000
    n_informative = 10

    X, y = make_sparse_data(n_samples, n_features, n_informative,
                            positive=positive)

    X_train, X_test = X[n_samples / 2:], X[:n_samples / 2]
    y_train, y_test = y[n_samples / 2:], y[:n_samples / 2]

    s_clf = ElasticNet(alpha=alpha, rho=0.8, fit_intercept=fit_intercept,
                       max_iter=max_iter, tol=1e-7, positive=positive,
                       warm_start=True)
    s_clf.fit(X_train, y_train)

    assert_almost_equal(s_clf.dual_gap_, 0, 4)
    assert_greater(s_clf.score(X_test, y_test), 0.85)

    # check the convergence is the same as the dense version
    d_clf = ElasticNet(alpha=alpha, rho=0.8, fit_intercept=fit_intercept,
                      max_iter=max_iter, tol=1e-7, positive=positive,
                      warm_start=True)
    d_clf.fit(X_train, y_train)

    assert_almost_equal(d_clf.dual_gap_, 0, 4)
    assert_greater(d_clf.score(X_test, y_test), 0.85)

    assert_almost_equal(s_clf.coef_, d_clf.coef_, 5)
    assert_almost_equal(s_clf.intercept_, d_clf.intercept_, 5)

    # check that the coefs are sparse
    assert_less(np.sum(s_clf.coef_ != 0.0), 2 * n_informative)

    # check that warm restart leads to the same result with
    # sparse and dense versions

    rng = np.random.RandomState(seed=0)
    coef_init = rng.randn(n_features)

    d_clf.fit(X_train, y_train, coef_init=coef_init)
    s_clf.fit(X_train, y_train, coef_init=coef_init)

    assert_almost_equal(s_clf.coef_, d_clf.coef_, 5)
    assert_almost_equal(s_clf.intercept_, d_clf.intercept_, 5)
开发者ID:cvkkumar,项目名称:scikit-learn,代码行数:46,代码来源:test_sparse_coordinate_descent.py

示例4: test_fit_simple_backupsklearn

# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import score [as 别名]
def test_fit_simple_backupsklearn():
    df = pd.read_csv("./open_data/simple.txt", delim_whitespace=True)
    X = np.array(df.iloc[:, :df.shape[1] - 1], dtype='float32', order='C')
    y = np.array(df.iloc[:, df.shape[1] - 1], dtype='float32', order='C')
    Solver = h2o4gpu.ElasticNet

    enet = Solver(glm_stop_early=False)
    print("h2o4gpu fit()")
    enet.fit(X, y)
    print("h2o4gpu predict()")
    print(enet.predict(X))
    print("h2o4gpu score()")
    print(enet.score(X,y))

    enet_wrapper = Solver(positive=True, random_state=1234)
    print("h2o4gpu scikit wrapper fit()")
    enet_wrapper.fit(X, y)
    print("h2o4gpu scikit wrapper predict()")
    print(enet_wrapper.predict(X))
    print("h2o4gpu scikit wrapper score()")
    print(enet_wrapper.score(X, y))

    from sklearn.linear_model.coordinate_descent import ElasticNet
    enet_sk = ElasticNet(positive=True, random_state=1234)
    print("Scikit fit()")
    enet_sk.fit(X, y)
    print("Scikit predict()")
    print(enet_sk.predict(X))
    print("Scikit score()")
    print(enet_sk.score(X, y))

    enet_sk_coef = csr_matrix(enet_sk.coef_, dtype=np.float32).toarray()

    print(enet_sk.coef_)

    print(enet_sk_coef)

    print(enet_wrapper.coef_)

    print(enet_sk.intercept_)
    print(enet_wrapper.intercept_)

    print(enet_sk.n_iter_)
    print(enet_wrapper.n_iter_)

    print("Coeffs, intercept, and n_iters should match")
    assert np.allclose(enet_wrapper.coef_, enet_sk_coef)
    assert np.allclose(enet_wrapper.intercept_, enet_sk.intercept_)
开发者ID:wamsiv,项目名称:h2o4gpu,代码行数:50,代码来源:test_elasticnet_sklearn_wrapper.py


注:本文中的sklearn.linear_model.coordinate_descent.ElasticNet.score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。