当前位置: 首页>>代码示例>>Python>>正文


Python ElasticNet.predict方法代码示例

本文整理汇总了Python中sklearn.linear_model.coordinate_descent.ElasticNet.predict方法的典型用法代码示例。如果您正苦于以下问题:Python ElasticNet.predict方法的具体用法?Python ElasticNet.predict怎么用?Python ElasticNet.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.linear_model.coordinate_descent.ElasticNet的用法示例。


在下文中一共展示了ElasticNet.predict方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_enet_toy_list_input

# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import predict [as 别名]
def test_enet_toy_list_input():
    """Test ElasticNet for various values of alpha and l1_ratio with list X"""

    X = np.array([[-1], [0], [1]])
    X = sp.csc_matrix(X)
    Y = [-1, 0, 1]       # just a straight line
    T = np.array([[2], [3], [4]])  # test sample

    # this should be the same as unregularized least squares
    clf = ElasticNet(alpha=0, l1_ratio=1.0)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [1])
    assert_array_almost_equal(pred, [2, 3, 4])
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163,  1.5245,  2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.5)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.45454], 3)
    assert_array_almost_equal(pred, [0.9090,  1.3636,  1.8181], 3)
    assert_almost_equal(clf.dual_gap_, 0)
开发者ID:MarkyV,项目名称:scikit-learn,代码行数:31,代码来源:test_sparse_coordinate_descent.py

示例2: test_enet_toy

# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import predict [as 别名]
def test_enet_toy():
    """
    Test ElasticNet for various parameters of alpha and l1_ratio.

    Actually, the parameters alpha = 0 should not be allowed. However,
    we test it as a border case.

    ElasticNet is tested with and without precomputed Gram matrix
    """

    X = np.array([[-1.], [0.], [1.]])
    Y = [-1, 0, 1]       # just a straight line
    T = [[2.], [3.], [4.]]  # test sample

    # this should be the same as lasso
    clf = ElasticNet(alpha=1e-8, l1_ratio=1.0)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [1])
    assert_array_almost_equal(pred, [2, 3, 4])
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=100,
                     precompute=False)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf.set_params(max_iter=100, precompute=True)
    clf.fit(X, Y)  # with Gram
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf.set_params(max_iter=100, precompute=np.dot(X.T, X))
    clf.fit(X, Y)  # with Gram
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.5)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.45454], 3)
    assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3)
    assert_almost_equal(clf.dual_gap_, 0)
开发者ID:AngelaGuoguo,项目名称:scikit-learn,代码行数:52,代码来源:test_coordinate_descent.py

示例3: test_same_multiple_output_sparse_dense

# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import predict [as 别名]
def test_same_multiple_output_sparse_dense():
    for normalize in [True, False]:
        l = ElasticNet(normalize=normalize)
        X = [[0, 1, 2, 3, 4], [0, 2, 5, 8, 11], [9, 10, 11, 12, 13], [10, 11, 12, 13, 14]]
        y = [[1, 2, 3, 4, 5], [1, 3, 6, 9, 12], [10, 11, 12, 13, 14], [11, 12, 13, 14, 15]]
        ignore_warnings(l.fit)(X, y)
        sample = np.array([1, 2, 3, 4, 5]).reshape(1, -1)
        predict_dense = l.predict(sample)

        l_sp = ElasticNet(normalize=normalize)
        X_sp = sp.coo_matrix(X)
        ignore_warnings(l_sp.fit)(X_sp, y)
        sample_sparse = sp.coo_matrix(sample)
        predict_sparse = l_sp.predict(sample_sparse)

        assert_array_almost_equal(predict_sparse, predict_dense)
开发者ID:agamemnonc,项目名称:scikit-learn,代码行数:18,代码来源:test_sparse_coordinate_descent.py

示例4: test_enet_small

# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import predict [as 别名]
def test_enet_small():
    """Toy tests with generated X and Y"""

    # TODO: add \theta prior knowledge here and test the output

    X = np.array([[-1.], [0.], [1.]])
    Y = [-1, 0, 1]          # a straight line
    T = [[2.], [3.], [4.]]  # test sample

    # this should be the same as lasso
    clf = ElasticNet(alpha=1e-8, l1_ratio=1.0)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [1])
    assert_array_almost_equal(pred, [2, 3, 4])
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=100,
                     precompute=False)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf.set_params(max_iter=100, precompute=True)
    clf.fit(X, Y)  # with Gram
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf.set_params(max_iter=100, precompute=np.dot(X.T, X))
    clf.fit(X, Y)  # with Gram
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.5)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.45454], 3)
    assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3)
    assert_almost_equal(clf.dual_gap_, 0)
开发者ID:doaa-altarawy,项目名称:PEAK,代码行数:47,代码来源:test_Iterative_enet.py

示例5: test_enet_toy_explicit_sparse_input

# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import predict [as 别名]
def test_enet_toy_explicit_sparse_input():
    """Test ElasticNet for various values of alpha and l1_ratio with sparse
    X"""

    # training samples
    X = sp.lil_matrix((3, 1))
    X[0, 0] = -1
    # X[1, 0] = 0
    X[2, 0] = 1
    Y = [-1, 0, 1]       # just a straight line (the identity function)

    # test samples
    T = sp.lil_matrix((3, 1))
    T[0, 0] = 2
    T[1, 0] = 3
    T[2, 0] = 4

    # this should be the same as lasso
    clf = ElasticNet(alpha=0, l1_ratio=1.0)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [1])
    assert_array_almost_equal(pred, [2, 3, 4])
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163,  1.5245,  2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.5)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.45454], 3)
    assert_array_almost_equal(pred, [0.9090,  1.3636,  1.8181], 3)
    assert_almost_equal(clf.dual_gap_, 0)
开发者ID:MarkyV,项目名称:scikit-learn,代码行数:40,代码来源:test_sparse_coordinate_descent.py

示例6: test_fit_simple_backupsklearn

# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import predict [as 别名]
def test_fit_simple_backupsklearn():
    df = pd.read_csv("./open_data/simple.txt", delim_whitespace=True)
    X = np.array(df.iloc[:, :df.shape[1] - 1], dtype='float32', order='C')
    y = np.array(df.iloc[:, df.shape[1] - 1], dtype='float32', order='C')
    Solver = h2o4gpu.ElasticNet

    enet = Solver(glm_stop_early=False)
    print("h2o4gpu fit()")
    enet.fit(X, y)
    print("h2o4gpu predict()")
    print(enet.predict(X))
    print("h2o4gpu score()")
    print(enet.score(X,y))

    enet_wrapper = Solver(positive=True, random_state=1234)
    print("h2o4gpu scikit wrapper fit()")
    enet_wrapper.fit(X, y)
    print("h2o4gpu scikit wrapper predict()")
    print(enet_wrapper.predict(X))
    print("h2o4gpu scikit wrapper score()")
    print(enet_wrapper.score(X, y))

    from sklearn.linear_model.coordinate_descent import ElasticNet
    enet_sk = ElasticNet(positive=True, random_state=1234)
    print("Scikit fit()")
    enet_sk.fit(X, y)
    print("Scikit predict()")
    print(enet_sk.predict(X))
    print("Scikit score()")
    print(enet_sk.score(X, y))

    enet_sk_coef = csr_matrix(enet_sk.coef_, dtype=np.float32).toarray()

    print(enet_sk.coef_)

    print(enet_sk_coef)

    print(enet_wrapper.coef_)

    print(enet_sk.intercept_)
    print(enet_wrapper.intercept_)

    print(enet_sk.n_iter_)
    print(enet_wrapper.n_iter_)

    print("Coeffs, intercept, and n_iters should match")
    assert np.allclose(enet_wrapper.coef_, enet_sk_coef)
    assert np.allclose(enet_wrapper.intercept_, enet_sk.intercept_)
开发者ID:wamsiv,项目名称:h2o4gpu,代码行数:50,代码来源:test_elasticnet_sklearn_wrapper.py

示例7: SVR

# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import predict [as 别名]
'''
norm1 =  np.linalg.norm(y_train)    
if norm1 != 0:   
    y_train, y_test =  y_train/norm1, y_test/norm1
print norm1
'''

print y_train.shape

model = SVR(C=1.0, gamma=1.0)
model = LinearRegression()

lasso = Lasso(alpha=0.1).fit(X_train, y_train)
enet = ElasticNet(alpha=0.1, l1_ratio=0.7).fit(X_train, y_train)

y_pred = lasso.predict(X_test)

print "MSE", mean_squared_error(y_test, y_pred)
m = np.mean(y_test)
print "MSE (Mean)",mean_squared_error(y_test, m*np.ones(len(y_test)))


print "r^2 on test data", r2_score(y_test, y_pred)

plt.plot(enet.coef_, label='Elastic net coefficients')
plt.plot(lasso.coef_, label='Lasso coefficients')
plt.legend(loc='best')
plt.title("Lasso R^2: %f, Elastic Net R^2: %f"
          % (r2_score(y_test, lasso.predict(X_test)), r2_score(y_test, enet.predict(X_test))))
plt.show()
开发者ID:DirkBrand,项目名称:Comment-Classification,代码行数:32,代码来源:test.py


注:本文中的sklearn.linear_model.coordinate_descent.ElasticNet.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。