本文整理汇总了Python中sklearn.linear_model.coordinate_descent.ElasticNet.predict方法的典型用法代码示例。如果您正苦于以下问题:Python ElasticNet.predict方法的具体用法?Python ElasticNet.predict怎么用?Python ElasticNet.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.linear_model.coordinate_descent.ElasticNet
的用法示例。
在下文中一共展示了ElasticNet.predict方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_enet_toy_list_input
# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import predict [as 别名]
def test_enet_toy_list_input():
"""Test ElasticNet for various values of alpha and l1_ratio with list X"""
X = np.array([[-1], [0], [1]])
X = sp.csc_matrix(X)
Y = [-1, 0, 1] # just a straight line
T = np.array([[2], [3], [4]]) # test sample
# this should be the same as unregularized least squares
clf = ElasticNet(alpha=0, l1_ratio=1.0)
clf.fit(X, Y)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [1])
assert_array_almost_equal(pred, [2, 3, 4])
assert_almost_equal(clf.dual_gap_, 0)
clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000)
clf.fit(X, Y)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
assert_almost_equal(clf.dual_gap_, 0)
clf = ElasticNet(alpha=0.5, l1_ratio=0.5)
clf.fit(X, Y)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [0.45454], 3)
assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3)
assert_almost_equal(clf.dual_gap_, 0)
示例2: test_enet_toy
# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import predict [as 别名]
def test_enet_toy():
"""
Test ElasticNet for various parameters of alpha and l1_ratio.
Actually, the parameters alpha = 0 should not be allowed. However,
we test it as a border case.
ElasticNet is tested with and without precomputed Gram matrix
"""
X = np.array([[-1.], [0.], [1.]])
Y = [-1, 0, 1] # just a straight line
T = [[2.], [3.], [4.]] # test sample
# this should be the same as lasso
clf = ElasticNet(alpha=1e-8, l1_ratio=1.0)
clf.fit(X, Y)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [1])
assert_array_almost_equal(pred, [2, 3, 4])
assert_almost_equal(clf.dual_gap_, 0)
clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=100,
precompute=False)
clf.fit(X, Y)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
assert_almost_equal(clf.dual_gap_, 0)
clf.set_params(max_iter=100, precompute=True)
clf.fit(X, Y) # with Gram
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
assert_almost_equal(clf.dual_gap_, 0)
clf.set_params(max_iter=100, precompute=np.dot(X.T, X))
clf.fit(X, Y) # with Gram
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
assert_almost_equal(clf.dual_gap_, 0)
clf = ElasticNet(alpha=0.5, l1_ratio=0.5)
clf.fit(X, Y)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [0.45454], 3)
assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3)
assert_almost_equal(clf.dual_gap_, 0)
示例3: test_same_multiple_output_sparse_dense
# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import predict [as 别名]
def test_same_multiple_output_sparse_dense():
for normalize in [True, False]:
l = ElasticNet(normalize=normalize)
X = [[0, 1, 2, 3, 4], [0, 2, 5, 8, 11], [9, 10, 11, 12, 13], [10, 11, 12, 13, 14]]
y = [[1, 2, 3, 4, 5], [1, 3, 6, 9, 12], [10, 11, 12, 13, 14], [11, 12, 13, 14, 15]]
ignore_warnings(l.fit)(X, y)
sample = np.array([1, 2, 3, 4, 5]).reshape(1, -1)
predict_dense = l.predict(sample)
l_sp = ElasticNet(normalize=normalize)
X_sp = sp.coo_matrix(X)
ignore_warnings(l_sp.fit)(X_sp, y)
sample_sparse = sp.coo_matrix(sample)
predict_sparse = l_sp.predict(sample_sparse)
assert_array_almost_equal(predict_sparse, predict_dense)
示例4: test_enet_small
# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import predict [as 别名]
def test_enet_small():
"""Toy tests with generated X and Y"""
# TODO: add \theta prior knowledge here and test the output
X = np.array([[-1.], [0.], [1.]])
Y = [-1, 0, 1] # a straight line
T = [[2.], [3.], [4.]] # test sample
# this should be the same as lasso
clf = ElasticNet(alpha=1e-8, l1_ratio=1.0)
clf.fit(X, Y)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [1])
assert_array_almost_equal(pred, [2, 3, 4])
assert_almost_equal(clf.dual_gap_, 0)
clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=100,
precompute=False)
clf.fit(X, Y)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
assert_almost_equal(clf.dual_gap_, 0)
clf.set_params(max_iter=100, precompute=True)
clf.fit(X, Y) # with Gram
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
assert_almost_equal(clf.dual_gap_, 0)
clf.set_params(max_iter=100, precompute=np.dot(X.T, X))
clf.fit(X, Y) # with Gram
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
assert_almost_equal(clf.dual_gap_, 0)
clf = ElasticNet(alpha=0.5, l1_ratio=0.5)
clf.fit(X, Y)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [0.45454], 3)
assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3)
assert_almost_equal(clf.dual_gap_, 0)
示例5: test_enet_toy_explicit_sparse_input
# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import predict [as 别名]
def test_enet_toy_explicit_sparse_input():
"""Test ElasticNet for various values of alpha and l1_ratio with sparse
X"""
# training samples
X = sp.lil_matrix((3, 1))
X[0, 0] = -1
# X[1, 0] = 0
X[2, 0] = 1
Y = [-1, 0, 1] # just a straight line (the identity function)
# test samples
T = sp.lil_matrix((3, 1))
T[0, 0] = 2
T[1, 0] = 3
T[2, 0] = 4
# this should be the same as lasso
clf = ElasticNet(alpha=0, l1_ratio=1.0)
clf.fit(X, Y)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [1])
assert_array_almost_equal(pred, [2, 3, 4])
assert_almost_equal(clf.dual_gap_, 0)
clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000)
clf.fit(X, Y)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
assert_almost_equal(clf.dual_gap_, 0)
clf = ElasticNet(alpha=0.5, l1_ratio=0.5)
clf.fit(X, Y)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [0.45454], 3)
assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3)
assert_almost_equal(clf.dual_gap_, 0)
示例6: test_fit_simple_backupsklearn
# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import predict [as 别名]
def test_fit_simple_backupsklearn():
df = pd.read_csv("./open_data/simple.txt", delim_whitespace=True)
X = np.array(df.iloc[:, :df.shape[1] - 1], dtype='float32', order='C')
y = np.array(df.iloc[:, df.shape[1] - 1], dtype='float32', order='C')
Solver = h2o4gpu.ElasticNet
enet = Solver(glm_stop_early=False)
print("h2o4gpu fit()")
enet.fit(X, y)
print("h2o4gpu predict()")
print(enet.predict(X))
print("h2o4gpu score()")
print(enet.score(X,y))
enet_wrapper = Solver(positive=True, random_state=1234)
print("h2o4gpu scikit wrapper fit()")
enet_wrapper.fit(X, y)
print("h2o4gpu scikit wrapper predict()")
print(enet_wrapper.predict(X))
print("h2o4gpu scikit wrapper score()")
print(enet_wrapper.score(X, y))
from sklearn.linear_model.coordinate_descent import ElasticNet
enet_sk = ElasticNet(positive=True, random_state=1234)
print("Scikit fit()")
enet_sk.fit(X, y)
print("Scikit predict()")
print(enet_sk.predict(X))
print("Scikit score()")
print(enet_sk.score(X, y))
enet_sk_coef = csr_matrix(enet_sk.coef_, dtype=np.float32).toarray()
print(enet_sk.coef_)
print(enet_sk_coef)
print(enet_wrapper.coef_)
print(enet_sk.intercept_)
print(enet_wrapper.intercept_)
print(enet_sk.n_iter_)
print(enet_wrapper.n_iter_)
print("Coeffs, intercept, and n_iters should match")
assert np.allclose(enet_wrapper.coef_, enet_sk_coef)
assert np.allclose(enet_wrapper.intercept_, enet_sk.intercept_)
示例7: SVR
# 需要导入模块: from sklearn.linear_model.coordinate_descent import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.ElasticNet import predict [as 别名]
'''
norm1 = np.linalg.norm(y_train)
if norm1 != 0:
y_train, y_test = y_train/norm1, y_test/norm1
print norm1
'''
print y_train.shape
model = SVR(C=1.0, gamma=1.0)
model = LinearRegression()
lasso = Lasso(alpha=0.1).fit(X_train, y_train)
enet = ElasticNet(alpha=0.1, l1_ratio=0.7).fit(X_train, y_train)
y_pred = lasso.predict(X_test)
print "MSE", mean_squared_error(y_test, y_pred)
m = np.mean(y_test)
print "MSE (Mean)",mean_squared_error(y_test, m*np.ones(len(y_test)))
print "r^2 on test data", r2_score(y_test, y_pred)
plt.plot(enet.coef_, label='Elastic net coefficients')
plt.plot(lasso.coef_, label='Lasso coefficients')
plt.legend(loc='best')
plt.title("Lasso R^2: %f, Elastic Net R^2: %f"
% (r2_score(y_test, lasso.predict(X_test)), r2_score(y_test, enet.predict(X_test))))
plt.show()