当前位置: 首页>>代码示例>>Python>>正文


Python RidgeClassifier.lower方法代码示例

本文整理汇总了Python中sklearn.linear_model.RidgeClassifier.lower方法的典型用法代码示例。如果您正苦于以下问题:Python RidgeClassifier.lower方法的具体用法?Python RidgeClassifier.lower怎么用?Python RidgeClassifier.lower使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.linear_model.RidgeClassifier的用法示例。


在下文中一共展示了RidgeClassifier.lower方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Eval

# 需要导入模块: from sklearn.linear_model import RidgeClassifier [as 别名]
# 或者: from sklearn.linear_model.RidgeClassifier import lower [as 别名]
def Eval(XTrain, YTrain, XTest, YTest, clf, return_predicted_labels=False):
	"""
		Inputs:
			XTrain - N by D matrix of training data vectors
			YTrain - N by 1 matrix of training class labels
			XTest - M by D matrix of testin data vectors
			YTrain - M by 1 matrix of testing class labels
			clstr - the clustering function 
				either the string = "KMeans" or "GMM"
				or a sklearn clustering instance
					with the methods .fit and 
		Outputs:
			A tuple containing (in the following order):
				Accuracy
				Overall Precision
				Overall Recall
				Overall F1 score
				Avg. Precision per class
				Avg. Recall per class
				F1 Score
				Precision per class
				Recall per class
				F1 Score per class
				(if return_predicted_labels)
					predicted class labels for each row in XTest
	"""

	if type(clf) == str:
		if 'ridge' in clf.lower():
			clf = RidgeClassifier(tol=1e-2, solver="lsqr")
		elif "perceptron" in clf.lower():
			clf = Perceptron(n_iter=50)
		elif "passive aggressive" in clf.lower() or 'passive-aggressive' in clf.lower():
			clf = PassiveAggressiveClassifier(n_iter=50)
		elif 'linsvm' in clf.lower() or 'linearsvm' in clf.lower() or 'linearsvc' in clf.lower():
			clf = LinearSVC()
		elif 'svm' in clf.lower() or 'svc' in clf.lower():
			clf = SVC()
		elif 'sgd' in clf.lower():
			clf = SGDClassifier()
   
	clf.fit(XTrain, YTrain)
	YPred = clf.predict(XTest)


	accuracy = sklearn.metrics.accuracy_score(YTest, YPred)
	(overall_precision, overall_recall, overall_f1, support) = sklearn.metrics.precision_recall_fscore_support(YTest, YPred, average='micro')
	(precision_per_class, recall_per_class, f1_per_class, support_per_class) = sklearn.metrics.precision_recall_fscore_support(YTest, YPred)
	avg_precision_per_class = np.mean(precision_per_class)
	avg_recall_per_class = np.mean(recall_per_class)
	avg_f1_per_class = np.mean(f1_per_class)

	del clf

	if return_predicted_labels:
		return (accuracy, overall_precision, overall_recall, overall_f1, avg_precision_per_class, avg_recall_per_class, avg_f1_per_class, precision_per_class, recall_per_class, f1_per_class, YPred)
	else:
		return (accuracy, overall_precision, overall_recall, overall_f1, avg_precision_per_class, avg_recall_per_class, avg_f1_per_class, precision_per_class, recall_per_class, f1_per_class)
开发者ID:nmonath,项目名称:NLPProject,代码行数:60,代码来源:SupervisedLearning.py


注:本文中的sklearn.linear_model.RidgeClassifier.lower方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。