当前位置: 首页>>代码示例>>Python>>正文


Python RidgeCV.log_predictive_density方法代码示例

本文整理汇总了Python中sklearn.linear_model.RidgeCV.log_predictive_density方法的典型用法代码示例。如果您正苦于以下问题:Python RidgeCV.log_predictive_density方法的具体用法?Python RidgeCV.log_predictive_density怎么用?Python RidgeCV.log_predictive_density使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.linear_model.RidgeCV的用法示例。


在下文中一共展示了RidgeCV.log_predictive_density方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: enumerate

# 需要导入模块: from sklearn.linear_model import RidgeCV [as 别名]
# 或者: from sklearn.linear_model.RidgeCV import log_predictive_density [as 别名]
            #preds, vars = model.predict_noiseless(X_test, Y_metadata=noise_dict)
            for emo_id, emo in enumerate(EMOS):
                # TODO: preprocessing
                emo_dict = {}
                to_predict = np.concatenate((X_test_list[emo_id], np.ones((X_test.shape[0], 1)) * emo_id), axis=1)
                noise_dict = {'output_index': np.ones((X_test.shape[0], 1), dtype=int) * (emo_id)}
                preds, vars = model.predict(to_predict, Y_metadata=noise_dict)
                #if args.label_preproc == 'scale':
                #    preds = Y_scaler_list[emo_id].inverse_transform(preds)
                emo_dict['mae'] = MAE(preds, Y_test_list[emo_id])
                emo_dict['rmse'] = np.sqrt(MSE(preds, Y_test_list[emo_id]))
                emo_dict['pearsonr'] = pearsonr(preds.flatten(), Y_test_list[emo_id].flatten())
                #Y_metadata = {}
                #Y_metadata['output_index'] = np.ones(X_test.shape[0]) * emo_id
                emo_dict['nlpd'] = -np.mean(model.log_predictive_density(to_predict, 
                                                                         Y_test_list[emo_id],
                                                                         Y_metadata=noise_dict))
                info_dict[emo] = emo_dict
                preds_list.append(preds.flatten())
                vars_list.append(vars.flatten())

        # Get parameters
        if args.model == 'ridge':
            info_dict['coefs'] = list(model.coef_)
            info_dict['intercept'] = model.intercept_
            info_dict['regularization'] = model.alpha_
        elif args.model == 'svr':
            info_dict['regularization'] = model.best_params_['C']
            info_dict['epsilon'] = model.best_params_['epsilon']
            info_dict['gamma'] = model.best_params_['gamma']
        else:
开发者ID:beckdaniel,项目名称:affect_string_kernel,代码行数:33,代码来源:avg_model_icm.py

示例2: MAE

# 需要导入模块: from sklearn.linear_model import RidgeCV [as 别名]
# 或者: from sklearn.linear_model.RidgeCV import log_predictive_density [as 别名]
        preds = model.predict(X_test)
        if args.label_preproc == 'scale':
            preds = Y_scaler.inverse_transform(preds)
        info_dict['mae'] = MAE(preds, Y_test.flatten())
        info_dict['rmse'] = np.sqrt(MSE(preds, Y_test.flatten()))
        info_dict['pearsonr'] = pearsonr(preds, Y_test.flatten())
    else:
        # TODO: check if this makes sense
        #preds, vars = model.predict(X_test)
        preds, vars = model.predict_noiseless(X_test)
        if args.label_preproc == 'scale':
            preds = Y_scaler.inverse_transform(preds)
        info_dict['mae'] = MAE(preds, Y_test)
        info_dict['rmse'] = np.sqrt(MSE(preds, Y_test))
        info_dict['pearsonr'] = pearsonr(preds.flatten(), Y_test.flatten())
        nlpd = model.log_predictive_density(X_test, Y_test)
        info_dict['nlpd'] = np.mean(nlpd)

    # Get parameters
    if args.model == 'ridge':
        info_dict['coefs'] = list(model.coef_)
        info_dict['intercept'] = model.intercept_
        info_dict['regularization'] = model.alpha_
    elif args.model == 'svr':
        info_dict['regularization'] = model.best_params_['C']
        info_dict['epsilon'] = model.best_params_['epsilon']
        info_dict['gamma'] = model.best_params_['gamma']
    elif args.model == 'rbf':
        info_dict['variance'] = float(model['rbf.variance'])
        info_dict['lengthscale'] = list(model['rbf.lengthscale'])
        info_dict['noise'] = float(model['Gaussian_noise.variance'])
开发者ID:beckdaniel,项目名称:affect_string_kernel,代码行数:33,代码来源:avg_model.py


注:本文中的sklearn.linear_model.RidgeCV.log_predictive_density方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。