当前位置: 首页>>代码示例>>Python>>正文


Python RidgeCV.log_likelihood方法代码示例

本文整理汇总了Python中sklearn.linear_model.RidgeCV.log_likelihood方法的典型用法代码示例。如果您正苦于以下问题:Python RidgeCV.log_likelihood方法的具体用法?Python RidgeCV.log_likelihood怎么用?Python RidgeCV.log_likelihood使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.linear_model.RidgeCV的用法示例。


在下文中一共展示了RidgeCV.log_likelihood方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: list

# 需要导入模块: from sklearn.linear_model import RidgeCV [as 别名]
# 或者: from sklearn.linear_model.RidgeCV import log_likelihood [as 别名]
     info_dict['regularization'] = model.alpha_
 elif args.model == 'svr':
     info_dict['regularization'] = model.best_params_['C']
     info_dict['epsilon'] = model.best_params_['epsilon']
     info_dict['gamma'] = model.best_params_['gamma']
 else:
     param_names = model.parameter_names()
     for p_name in param_names:
         if p_name == 'ICM.B.W':
             info_dict[p_name] = list([list(pars) for pars in model[p_name]])
         else:
             try:
                 info_dict[p_name] = float(model[p_name])
             except TypeError: #ARD
                 info_dict[p_name] = list(model[p_name])
     info_dict['log_likelihood'] = float(model.log_likelihood())
 # elif args.model == 'rbf':
 #     info_dict['variance'] = float(model['ICM.rbf.variance'])
 #     info_dict['lengthscale'] = list(model['ICM.rbf.lengthscale'])
 #     info_dict['noise'] = list([float(noise) for noise in model['mixed_noise.*']])
 #     info_dict['log_likelihood'] = float(model.log_likelihood())
 # elif args.model == 'mat32':
 #     info_dict['variance'] = float(model['ICM.Mat32.variance'])
 #     info_dict['lengthscale'] = list(model['ICM.Mat32.lengthscale'])
 #     info_dict['noise'] = list([float(noise) for noise in model['mixed_noise.*']])
 #     info_dict['log_likelihood'] = float(model.log_likelihood())
 # elif args.model == 'mat52':
 #     info_dict['variance'] = float(model['ICM.Mat52.variance'])
 #     info_dict['lengthscale'] = list(model['ICM.Mat52.lengthscale'])
 #     info_dict['noise'] = list([float(noise) for noise in model['mixed_noise.*']])
 #     info_dict['log_likelihood'] = float(model.log_likelihood())
开发者ID:beckdaniel,项目名称:affect_string_kernel,代码行数:33,代码来源:avg_model_icm.py


注:本文中的sklearn.linear_model.RidgeCV.log_likelihood方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。