当前位置: 首页>>代码示例>>Python>>正文


Python LassoCV.predict方法代码示例

本文整理汇总了Python中sklearn.linear_model.LassoCV.predict方法的典型用法代码示例。如果您正苦于以下问题:Python LassoCV.predict方法的具体用法?Python LassoCV.predict怎么用?Python LassoCV.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.linear_model.LassoCV的用法示例。


在下文中一共展示了LassoCV.predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: bagging

# 需要导入模块: from sklearn.linear_model import LassoCV [as 别名]
# 或者: from sklearn.linear_model.LassoCV import predict [as 别名]
	def bagging(self,trains,tests,train_y,model_name=None):
		blend_train = trains.T
		bclf = LassoCV(n_alphas=100, alphas=None, normalize=True, cv=5, fit_intercept=True, max_iter=10000, positive=True)
		bclf.fit(blend_train, train_y)
		y_test_predict = bclf.predict(tests.T)
		train_predict = bclf.predict(trains.T)

		return train_predict,y_test_predict
开发者ID:tereka114,项目名称:MachineLearningCombinator,代码行数:10,代码来源:Ensembler.py

示例2: lasso_cv

# 需要导入模块: from sklearn.linear_model import LassoCV [as 别名]
# 或者: from sklearn.linear_model.LassoCV import predict [as 别名]
def lasso_cv(x, y, x_pred=None, max_deg=3, cv=10, max_iter=1e3, return_model=False):
    """LASSO polynomial fit with cross-validation.
    
    Regularized polynomial regression (by penalized least-squares) from a
    range of degrees up to n = max_deg. The LASSO regression minimises MSE and
    penalizes the size of the parameter vector using L1-norm, which leads to
    fewer coefficients in the fitted model.

    - The 'alpha' parameter (amount of penalization) is selected by k-fold CV.
    - Predicts fitted model on given values 'x_pred' (default use 'x').
    - Supports NaNs.

    """
    ind, = np.where((~np.isnan(x)) & (~np.isnan(y)))
    x_, y_ = x[ind], y[ind]
    X_ = dmatrix('C(x_, Poly)')
    if x_pred is None:
        X = dmatrix('C(x, Poly)')      # predict on original values
    else:
        X = dmatrix('C(x_pred, Poly)') # predict on given values
    lasso = LassoCV(cv=cv, copy_X=True, normalize=True, max_iter=max_iter)
    lasso = lasso.fit(X_[:,1:max_deg+1], y_)
    y_pred = lasso.predict(X[:,1:max_deg+1])
    if return_model:
        y_pred = [y_pred, lasso]
    return y_pred
开发者ID:fspaolo,项目名称:altimpy,代码行数:28,代码来源:tseries.py

示例3: lassoCV_regression

# 需要导入模块: from sklearn.linear_model import LassoCV [as 别名]
# 或者: from sklearn.linear_model.LassoCV import predict [as 别名]
def lassoCV_regression(data,target,alphas):
    clf=LassoCV()
    sfm = SelectFromModel(clf, threshold=0.25)
    sfm.fit(data, target)
    n_features = sfm.transform(data).shape[1]
    
    while n_features > 2:
        sfm.threshold += 0.1
        data_transform = sfm.transform(data)
        n_features = data_transform.shape[1]
     
    rmses=[]
    kf=KFold(len(target),10,True,None)
    for train_index, test_index in kf:
        data_train,data_test=data_transform[train_index],data_transform[test_index]
        target_train,target_test=target[train_index],target[test_index]
        clf.fit(data_train,target_train)
        rmse=sqrt(np.mean((clf.predict(data_test)-target_test)**2))
        rmses.append(rmse)
        
    x0=np.arange(1,11)
    
    plt.figure()
    plt.plot(x0,rmses,label='LassoCV')
    plt.legend()
    plt.show()
    
    return rmses
开发者ID:eprym,项目名称:EE-239AS,代码行数:30,代码来源:problem5.py

示例4: remove_foreground_glm

# 需要导入模块: from sklearn.linear_model import LassoCV [as 别名]
# 或者: from sklearn.linear_model.LassoCV import predict [as 别名]
def remove_foreground_glm(
        x, y,
        spatial_mask=None, spectral_mask=None,
        alphas=None, l1_ratio=1.):
    """Summary

    Args:
        x (TYPE): Description
        y (TYPE): Description
        spatial_mask (TYPE, optional): Description
        spectral_mask (TYPE, optional): Description
        alphas (TYPE, optional): Description

    Returns:
        TYPE: Description
    """

    # cast to double and reshape
    x_rs = np.float64(x.reshape((x.shape[0], -1))).T
    y_rs = np.float64(y.flatten())

    if spatial_mask is None:
        spatial_mask_rs = np.ones_like(y_rs, dtype=bool)
    else:
        spatial_mask_rs = spatial_mask.flatten()

    if spectral_mask is None:
        spectral_mask = np.ones(x_rs.shape[1], dtype=bool)

    if alphas is not None:
        alphas = np.atleast_1d(alphas)

    # fit GLM
    if l1_ratio == 1.:
        reg = LassoCV(
            positive=True,
            alphas=alphas,
            n_jobs=-1,
            max_iter=5000
        )
    elif l1_ratio == 0.:
        reg = RidgeCV(
            alphas=alphas,
        )
    else:
        reg = ElasticNetCV(
            positive=True,
            alphas=alphas,
            n_jobs=-1,
            l1_ratio=l1_ratio
        )

    reg.fit(x_rs[spatial_mask_rs][:, spectral_mask], y_rs[spatial_mask_rs])

    y_model = reg.predict(x_rs[:, spectral_mask]).reshape(y.shape)

    glm_coeffs = np.zeros(x_rs.shape[1], dtype=np.float32)
    glm_coeffs[spectral_mask] += reg.coef_

    return y_model, reg, glm_coeffs
开发者ID:DanielLenz,项目名称:phd_helpers,代码行数:62,代码来源:machine_learning.py

示例5: predict

# 需要导入模块: from sklearn.linear_model import LassoCV [as 别名]
# 或者: from sklearn.linear_model.LassoCV import predict [as 别名]
	def predict(self,trains_x,train_y,tests_x,parameters,times=10,isFile=True,foldername="blend-dir"):
		"""
		Ensamble many features and regression

		:params train_X: dictionary for training
		:params train_y: testing vector
		"""
		#parameter_get
		test_data_sample = tests_x.values()[0]

		if not os.path.exists(foldername):
			os.makedirs(foldername)

		skf = None
		kfold_file = foldername + "/kfold_index.pkl"
		if os.path.exists(kfold_file):
			skf = pickle.load(open(kfold_file,"r"))
		else:
			skf = KFold(n=len(train_y),n_folds=times,shuffle=True)
			pickle.dump(skf,open(kfold_file,"w"))

		blend_train = np.zeros((len(train_y),len(parameters)))
		blend_test = np.zeros((len(test_data_sample),len(parameters)))

		for j,parameter in enumerate(parameters):
			train_x = trains_x[parameter['data']]
			test_x = tests_x[parameter['data']]

			blend_test_tmp = np.zeros((len(test_data_sample),len(parameters)))

			#file path check
			for i, (train_index,valid_index) in enumerate(skf):
				clf = model_select(parameter['parameter'])

				train = train_x[train_index]
				train_valid_y = train_y[train_index]

				kfold_filepath = "./" + foldername + "/parameter_{}_kfold_{}.pkl".format(j,i)

				if os.path.exists(kfold_filepath):
					blend_train_prediction,blend_test_prediction = pickle.load(open(kfold_filepath,"r"))
					blend_train[train_index,j] = np.expm1(clf.predict(train))
					blend_test_tmp[:,i] = np.expm1(clf.predict(test_x))
				else:
					clf.fit(train,np.log1p(train_valid_y))
					blend_train_prediction = np.expm1(clf.predict(train))
					blend_test_prediction = np.expm1(clf.predict(test_x))
					pickle.dump((blend_train_prediction,blend_test_prediction),open(kfold_filepath,"w"))

				blend_train[train_index,j] = blend_train_prediction
				blend_test_tmp[:,i] = blend_test_prediction
			blend_test[:,j] = blend_test_tmp.mean(1)

		#Blending Model
		bclf = LassoCV(n_alphas=100, alphas=None, normalize=True, cv=5, fit_intercept=True, max_iter=10000, positive=True)
		bclf.fit(blend_train, train_y)
		y_test_predict = bclf.predict(blend_test)

		return y_test_predict
开发者ID:tereka114,项目名称:MachineLearningCombinator,代码行数:61,代码来源:Ensembler.py

示例6: fit_Lasso

# 需要导入模块: from sklearn.linear_model import LassoCV [as 别名]
# 或者: from sklearn.linear_model.LassoCV import predict [as 别名]
def fit_Lasso(features_train, labels_train, features_pred):
	model = LassoCV()
	model.fit(features_train, labels_train)
	mse = model.mse_path_
	print "LASSO - Mean square error: ", mse.shape
	# Test the model
	labels_pred = model.predict(features_pred)
	return labels_pred
开发者ID:SU-AstroML,项目名称:AstroML-course,代码行数:10,代码来源:fit_method.py

示例7: make_model_and_predict

# 需要导入模块: from sklearn.linear_model import LassoCV [as 别名]
# 或者: from sklearn.linear_model.LassoCV import predict [as 别名]
def make_model_and_predict(train_file, test_file):
    """Given name of training csv file, name of test csv file, constructs
    a random forest model and outputs predictions to a time-stampled csv file.
    If the test_file has SalaryNormalized as an attribute, it will score the
    model and write the result in the file "score<datetime>"
    """

    train = pd.read_csv(train_file)
    valid = pd.read_csv(test_file)
    number_of_word_features = 200
    title_words = count_words_in_column(train, "Title")
    key_count_pairs = [(k,v) for (k,v) in title_words.items() if k not in
                                                stopwords.words('english')]

    key_count_pairs.sort(key=lambda (k,v): -v)

    for word, count in key_count_pairs[:number_of_word_features]:
        add_appearance_count_feature(train, word, "Title")
        add_appearance_count_feature(valid, word, "Title")


    group_features = ["LocationNormalized", "Category", "Company", "SourceName"]

    for f in group_features:
        continuize_feature(train, valid, f, "SalaryNormalized")

    feature_columns = train.columns[12:]

    feature=train[feature_columns]
    label=train.SalaryNormalized
    clf = LassoCV()
    clf.fit(feature, label)

    valid_salary_predict = clf.predict(valid[feature_columns])
    valid["SalaryNormalized_Predict"] = valid_salary_predict

    date_string = re.sub("[ :.]", "", str(datetime.datetime.now()))
    predict_filename = 'predict' + date_string + '.csv'
    score_filename = 'score' + date_string + '.txt'
    with open(predict_filename,'wb') as f:
        valid[["Id","SalaryNormalized_Predict"]].to_csv(f, index=False,
                                                    header=False)

    ##Computes average RMS error and writes score to file
    if hasattr(valid, 'SalaryNormalized'):
        score = 0
        for i,_ in enumerate(valid["SalaryNormalized_Predict"]):
            score += (valid.SalaryNormalized[i] -
                                valid.SalaryNormalized_Predict[i]) **2
        score = math.sqrt(score/len(valid["SalaryNormalized_Predict"]))
        with open (score_filename, 'wb') as f:
            f.write("Train: " + train_file + "\n")
            f.write("Test: " + test_file + "\n")
            f.write("Score: " + str(score) + "\n")
开发者ID:kkwteh,项目名称:job_competition,代码行数:56,代码来源:kaggle_job_model.py

示例8: get_model_per_cluster

# 需要导入模块: from sklearn.linear_model import LassoCV [as 别名]
# 或者: from sklearn.linear_model.LassoCV import predict [as 别名]
def get_model_per_cluster(X, Y):
    model_per_cluster = {}
    for c in X.cluster.unique():    
        X_cluster = X[X.cluster==c]
        Y_true = Y[Y.cluster == c].ALSFRS_slope
        
        regr = LassoCV(cv=5)
        regr.fit(X_cluster, Y_true)

        print 'cluster: %d size: %s' % (c, Y_true.shape)
        Y_predict = regr.predict(X_cluster)
        print "\t RMS error (0 is perfect): %.2f" % np.sqrt(np.mean(
            (Y_predict - Y_true) ** 2))
        regression_SS = ((Y_predict - Y_true) ** 2).sum()
        residual_SS =((Y_true - Y_true.mean()) ** 2).sum()
        print '\t coefficient of determination R^2 = %.2f ' % (1.0 - regression_SS/residual_SS) # regr.score(X_cluster, Y_true)
        cov = sum((Y_predict - Y_predict.mean())*(Y_true - Y_true.mean()))
        Y_predict_std = np.sqrt(sum((Y_predict - Y_predict.mean())**2))
        Y_true_std = np.sqrt(sum((Y_true - Y_true.mean())**2))
        print '\t pearson correlation r = %.2f ' % (cov/(Y_predict_std*Y_true_std)) # scipy.stats.pearsonr(Y_predict, Y_true)[0]
        print "3 sample predictions: ", regr.predict(X_cluster)[:3]
        model_per_cluster[c] = {"cluster_train_data_means": X_cluster.mean(), "model" : regr}
    return model_per_cluster
开发者ID:ihadanny,项目名称:turbulence-z-team,代码行数:25,代码来源:modeling_funcs.py

示例9: lassoRegularization

# 需要导入模块: from sklearn.linear_model import LassoCV [as 别名]
# 或者: from sklearn.linear_model.LassoCV import predict [as 别名]
def lassoRegularization(X,Y):
    """
    :param X: data consisting of features (excluding class variable)
    :param Y: column vector consisting of class variable
    :return: report best RMSE value for lasso regularization
    """
    tuningAlpha = [0.1,0.01,0.001]
    lasso = LassoCV(normalize=True, alphas=tuningAlpha, cv=10)
    lasso.fit(X,Y)
    prediction = lasso.predict(X)

    print
    print "LASSO REGULARIZATION"
    print "Best Alpha value for Lasso Regularization : " + str(lasso.alpha_)
    print 'Best RMSE for corresponding Alpha =', np.sqrt(mean_squared_error(Y, prediction))
开发者ID:RonakSumbaly,项目名称:EE239AS-Signal-and-Systems,代码行数:17,代码来源:utility.py

示例10: __init__

# 需要导入模块: from sklearn.linear_model import LassoCV [as 别名]
# 或者: from sklearn.linear_model.LassoCV import predict [as 别名]
class LocalRegression:
    """This class implements "local" regression. Given a set of training data and a set of unknown data,
           iterate through each unknown spectrum, find the nearest training spectra, and generate a model.
           Each of these local models is optimized using built-in cross validation methods from scikit."""
    def __init__(self, params, n_neighbors = 250):
        """Initialize LocalRegression

        Arguments:
        params = Dict containing the keywords and parameters for the regression method to be used.

        Keyword arguments:
        n_neighbors = User-specified number of training spectra to use to generate the local regression model for each
                      unknown spectrum.

        """
        self.model = LassoCV(**params) # For now, the only option is LASSO. Other methods to be added in the future
                                       # params is a dict containing the keywords and parameters for LassoCV

        self.neighbors = NearestNeighbors(n_neighbors=n_neighbors)

    def fit_predict(self,x_train,y_train, x_predict):
        """Use local regression to predict values for unknown data.

        Arguments:
            x_train = The training data spectra.
            y_train = The values of the quantity being predicted for the training data
            x_predict = The unknown spectra for which y needs to be predicted.
        """
        self.neighbors.fit(x_train)
        predictions = []
        coeffs = []
        intercepts = []
        for i in range(x_predict.shape[0]):
            print('Predicting spectrum ' + str(i + 1))
            x_temp = np.array(x_predict[i])
            foo, ind = self.neighbors.kneighbors([x_temp])
            x_train_local = np.squeeze(x_train[ind])
            y_train_local = np.squeeze(y_train[ind])

            cv = GroupKFold(n_splits=3)
            cv = cv.split(x_train_local, y_train_local,
                          groups=y_train_local)
            self.model.fit(x_train_local, y_train_local)
            predictions.append(self.model.predict([x_temp])[0])
            coeffs.append(self.model.coef_)
            intercepts.append(self.model.intercept_)
        return predictions, coeffs, intercepts
开发者ID:USGS-Astrogeology,项目名称:PySAT,代码行数:49,代码来源:local_regression.py

示例11: lassocvclassifier

# 需要导入模块: from sklearn.linear_model import LassoCV [as 别名]
# 或者: from sklearn.linear_model.LassoCV import predict [as 别名]
def lassocvclassifier(training_samples, eval_samples, vectorizer, do_grid_search=False):
    X_train, Y_train = training_samples
    X_eval, Y_eval = eval_samples
    #clf = SGDClassifier(loss='log', penalty= 'l2',l1_ratio=0.0, n_iter=30, shuffle=True, verbose=False, 
    #                    n_jobs=4, alpha=1e-4, average=True, class_weight=None)
    clf = LassoCV()
   
    clf.fit(X_train, Y_train)
    #y_train_true, y_train_pred = Y_train, clf.predict(X_train)
    print_top_10_words = True
    
    
    scores = cross_validation.cross_val_score(clf, X_train, Y_train, cv=5, n_jobs=5, scoring='log_loss')
    print scores, np.mean(scores), np.median(scores)

    print(clf)
    #scores = cross_validation.cross_val_score(clf.best_estimator_, X_train, Y_train, cv=10, scoring='log_loss')
    #print scores, np.mean(scores), np.median(scores)
    y_true, y_pred = Y_eval, clf.predict(X_eval)
    y_prob = clf.predict_proba(X_eval)
开发者ID:afshinrahimi,项目名称:telstra,代码行数:22,代码来源:models.py

示例12: MovieTrainer

# 需要导入模块: from sklearn.linear_model import LassoCV [as 别名]
# 或者: from sklearn.linear_model.LassoCV import predict [as 别名]
class MovieTrainer(object):
    
    def __init__(self,training_file,test_file):
        self._training_pickle=training_file
        self._test_pickle=test_file
        
        #to be defined later
        self._list_of_dicts=None
        self._dataframe=None
        self._features=None
        self._test_features=None
        self._labels=None
        self._clf=None
        
        self._training_frame=None
        self._test_frame=None
        self._prediction_frame=None
        
        #dicts
        self._actor_dict=None
        self._director_dict=None
        self._genre_dict=None
        self._production_house=None
        
    
    def _load_dataframe(self):
        if os.path.isfile(self._training_pickle) ==True:
            self._training_dict=pickle.load(file(self._training_pickle))
        else:
            raise AttributeError("Cannot find pickle file:%s"%self._training_pickle)
        
        if os.path.isfile(self._test_pickle) ==True:
            self._test_dict=pickle.load(file(self._test_pickle))
        else:
           raise AttributeError("Cannot find pickle file:%s"%self._test_pickle)
          
         #load pandas frame
         
        self._training_frame=pd.DataFrame(self._training_dict)
        self._test_frame=pd.DataFrame(self._test_dict)
        
        #drop movies with no names 
        self._training_frame.dropna(subset=["moviename"])
        self._test_frame.dropna(subset=["moviename"])
        return
            #raise error?
    
    def _addtodict(self,name,this_dict):
        if this_dict.has_key(name):
            this_dict[name]+=1
        else:
            this_dict[name]=1
        return
        
    def _modify_string(self,playername):
        playername = re.sub('^\s+|\s+$','', playername)
        playername=re.sub('\s+','_',playername)
        playername=re.sub('\*','',playername)
        return playername
    
    #this function creates a list of features
    #corresponding to the most frequent actors 
    #in a movie
    def _create_playerdict(self,frame,colname,num_features):
        
        playerdict={}
        
        
        for index in frame.index:
            #for each row, we have list of actors
            #like ['Sandra Bullock', 'Melissa McCarthy']
            playerlist=frame.ix[index,colname] 
            
            
            if type(playerlist)!=float:
                #only actors have multiple list members, other players
                #like director don't
                if colname=="actors":
                    for playername in playerlist:
                        #remove spaces, *, leading trailing spaces
                        playername=self._modify_string(playername)
                        self._addtodict(playername,playerdict)

                else:
                    playerlist=self._modify_string(playerlist)
                    self._addtodict(playerlist,playerdict)   
        
        
        
        counter=0
        feature_list=[]
        #sort the dict to get players with highest number of movies
        for key,value in sorted(playerdict.items(),key=lambda x:x[1],reverse=True):
            #print key,value
            feature_list.append(key)
            counter+=1
            if counter>num_features:
                break
        return feature_list
    
#.........这里部分代码省略.........
开发者ID:souravc83,项目名称:MovieMetR,代码行数:103,代码来源:movietrainer2.py

示例13: LassoCV

# 需要导入模块: from sklearn.linear_model import LassoCV [as 别名]
# 或者: from sklearn.linear_model.LassoCV import predict [as 别名]
    test_data["casual_log"], feature_engg_linreg_model.predict(test_data.drop(target, axis=1))
)


# Not much difference? > Doesn't look like we are overfitting!

# But how to perform shrinkage/penalized regression in general?

from sklearn.linear_model import LassoCV

feature_engg_lassocv_model = LassoCV(max_iter=50, cv=3, n_jobs=-1, random_state=42)

feature_engg_lassocv_model.fit(train_data.drop(target, axis=1), train_data["casual_log"])

feature_engg_lassocv_mse_train = metrics.mean_squared_error(
    train_data["casual_log"], feature_engg_lassocv_model.predict(train_data.drop(target, axis=1))
)

feature_engg_lassocv_mse_test = metrics.mean_squared_error(
    test_data["casual_log"], feature_engg_lassocv_model.predict(test_data.drop(target, axis=1))
)


# Check the performance on test set
print feature_engg_linreg_mse_test
print feature_engg_lassocv_mse_test
# Penalization decreases performance?

# Compare coefficients with non penalized model
print feature_engg_linreg_model.coef_[1:10]
print feature_engg_lassocv_model.coef_[1:10]
开发者ID:sumit12dec,项目名称:ml_workshop_jul15,代码行数:33,代码来源:bias_var_reg.py

示例14: train

# 需要导入模块: from sklearn.linear_model import LassoCV [as 别名]
# 或者: from sklearn.linear_model.LassoCV import predict [as 别名]
#split the data into train(0.75) and test(0.25)
from sklearn.cross_validation import train_test_split
train, test = train_test_split(movie_df, test_size = 0.25)

#fit lasso CV model
#predictor_list is the list of variables that we want to use for modelling
#here I get it from the column names -predictors and movie title. you
#can create your own directly from the name list
predictor_list = list(train.columns.values)
predictor_list.remove('domestic_gross')
predictor_list.remove('tomatoRating')
predictor_list.remove('new_title')

#fit the lasso model, which get selection and estimation at one step.
#if you want to see which variable is significant, there is an easy way:
#just look at the coefficients, greater than 0 means that it is used for prediction

from sklearn.linear_model import LassoCV
clf = LassoCV(cv=20).fit(train[predictor_list],train.domestic_gross)
Y_pred = clf.predict(test[predictor_list])

print(clf.coef_)

#calculate the mean_squared_error
from sklearn.metrics import mean_squared_error
print mean_squared_error(Y_pred, test.domestic_gross)
开发者ID:aa-oswald,项目名称:team4_project1,代码行数:28,代码来源:Project_model.py

示例15: print

# 需要导入模块: from sklearn.linear_model import LassoCV [as 别名]
# 或者: from sklearn.linear_model.LassoCV import predict [as 别名]
#                        'hot',
#                        'frigid',
#                        'all_high_snow',
#                        'all_high_precip',
                        'cold'
                        ]
        X_total = store_df[columns_list]
        X_train = df_train[columns_list]
        X_test = df_test[columns_list]

        total_data = X_total.values
        train_data = X_train.values
        test_data = X_test.values
        regr = regr.fit( train_data[0::,1::], train_data[0::,0] )
        #print(regr.alpha_,store,item)
        prediction = regr.predict(test_data[0::,1::])
        prediction = np.maximum(prediction, 0.)
        prediction_total = regr.predict(total_data[0::,1::])
        prediction_total = np.maximum(prediction_total, 0.)
        total_series = pd.Series(prediction_total, unique_dates_int)

        rmse = np.sqrt(((test_data[0::,0] - prediction) ** 2).mean())
        se = ((test_data[0::,0] - prediction) ** 2).sum()
#        print(rmse,store,item)
        rmse_total = rmse_total + rmse
        se_total = se_total + se

#        plt.scatter(df_test.index,test_data[0::,0] - prediction)
#        plt.xlabel('date')
#        plt.xlim(0,1050)
#        plt.ylabel('truth - pred')
开发者ID:Jun321,项目名称:SideProjects,代码行数:33,代码来源:walmart.py


注:本文中的sklearn.linear_model.LassoCV.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。