当前位置: 首页>>代码示例>>Python>>正文


Python ElasticNet.predict方法代码示例

本文整理汇总了Python中sklearn.linear_model.ElasticNet.predict方法的典型用法代码示例。如果您正苦于以下问题:Python ElasticNet.predict方法的具体用法?Python ElasticNet.predict怎么用?Python ElasticNet.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.linear_model.ElasticNet的用法示例。


在下文中一共展示了ElasticNet.predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: check_ElasticNet

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import predict [as 别名]
def check_ElasticNet(X, y, pred, tol, reg_alpha, reg_lambda, weights):
    enet = ElasticNet(alpha=reg_alpha + reg_lambda,
                      l1_ratio=reg_alpha / (reg_alpha + reg_lambda))
    enet.fit(X, y)
    enet_pred = enet.predict(X)
    assert np.isclose(weights, enet.coef_, rtol=tol, atol=tol).all()
    assert np.isclose(enet_pred, pred, rtol=tol, atol=tol).all()
开发者ID:amitkr492,项目名称:MACHINE_LEARNING,代码行数:9,代码来源:test_linear.py

示例2: elasticNet

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import predict [as 别名]
def elasticNet(X,y):

    print("\n### ~~~~~~~~~~~~~~~~~~~~ ###")
    print("Lasso Regression")

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    myDegree = 40
    polynomialFeatures = PolynomialFeatures(degree=myDegree, include_bias=False)
    Xp = polynomialFeatures.fit_transform(X)

    myScaler = StandardScaler()
    scaled_Xp = myScaler.fit_transform(Xp)

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    elasticNet = ElasticNet(alpha=1e-7,l1_ratio=0.5)
    elasticNet.fit(scaled_Xp,y)

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    dummyX = np.arange(0,2,0.01)
    dummyX = dummyX.reshape((dummyX.shape[0],1))
    dummyXp = polynomialFeatures.fit_transform(dummyX)
    scaled_dummyXp = myScaler.transform(dummyXp)
    dummyY = elasticNet.predict(scaled_dummyXp)

    outputFILE = 'plot-elasticNet.png'
    fig, ax = plt.subplots()
    fig.set_size_inches(h = 6.0, w = 10.0)
    ax.axis([0,2,0,15])
    ax.scatter(X,y,color="black",s=10.0)
    ax.plot(dummyX, dummyY, color='red', linewidth=1.5)
    plt.savefig(filename = outputFILE, bbox_inches='tight', pad_inches=0.2, dpi = 600)

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    return( None )
开发者ID:paradisepilot,项目名称:statistics,代码行数:36,代码来源:elasticNet.py

示例3: enet

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import predict [as 别名]
def enet(a):
    print ("Doing elastic net")
    clf3 = ElasticNet(alpha=a)
    clf3.fit(base_X, base_Y)
    print ("Score = %f" % clf3.score(base_X, base_Y))
    clf3_pred = clf3.predict(X_test)
    write_to_file("elastic.csv", clf3_pred)
开发者ID:abbylyons,项目名称:181practicals,代码行数:9,代码来源:enetTests.py

示例4: report_ff_en

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import predict [as 别名]
def report_ff_en():
    # Fastfood approximation of Gaussian kernel
    para = FastfoodPara(n, d)
    st = time()
    PHI_train, _ = FastfoodForKernel(trainData, para, sgm)
    elapsed_ff_kern_train = time() - st
    st = time()
    PHI_valid, _ = FastfoodForKernel(validationData, para, sgm)
    elapsed_ff_kern_valid = time() - st

    # Train elastic net on projected training data
    en = ElasticNet()
    st = time()
    en.fit(PHI_train.T, trainLabels)
    elapsed_en_fit = time() - st

    # Predict labels for projected validation data
    st = time()
    y_pred = en.predict(PHI_valid.T)
    elapsed_en_pred = time() - st

    # Report performance
    mse_proj = metrics.mean_squared_error(validationLabels, y_pred)
    # print("For projected data, MSE = {:0.4g}.".format(mse_proj))

    return mse_proj, elapsed_en_fit, elapsed_ff_kern_train
开发者ID:kafluette,项目名称:fastfood,代码行数:28,代码来源:report_en.py

示例5: enet_granger_causality_test

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import predict [as 别名]
def enet_granger_causality_test(X_t, y_t, top_df, max_iter=10000000):
    """
    Return the cv-parameters tested across the whole data
    :param X_t:
    :param y_t:
    :param top_df:
    :return: res_df, test_betas
    """

    test_errs = np.zeros(len(top_df))
    scores = np.zeros(len(top_df))
    dfs = np.zeros(len(top_df))

    test_coefs = np.zeros((len(top_df), X_t.shape[1]))
    for i in range(len(top_df)):
        alpha = top_df.iloc[i]["alpha"]
        lambda_min = top_df.iloc[i]["lambda.min"]
        enet = ElasticNet(l1_ratio=alpha, alpha=lambda_min, max_iter=max_iter)
        enet.fit(X_t, y_t)
        y_pred = enet.predict(X_t)
        test_errs[i] = np.average((y_t - y_pred)**2)
        scores[i] = enet.score(X_t, y_t)
        test_coefs[i] = enet.coef_

        dfs[i] = len(np.where(enet.coef_)[0])

    top_df["test_err"] = test_errs
    top_df["score"] = scores
    top_df["df"] = dfs


    return top_df, test_coefs
开发者ID:lujonathanh,项目名称:v-causal-snps,代码行数:34,代码来源:CausalTests.py

示例6: fit_enet

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import predict [as 别名]
def fit_enet(train_X, train_y, test_X):
    """
    Use linear regression to predict. Elastic net is LR with L1 and L2
    regularisation.
    
    :param train_X:
    :param train_y:
    :param test_X:
    :return:
    """
    enet = ElasticNet()
    enet.fit(train_X, train_y)
    model = "ElasticNet int %.2f coefs %s" % (enet.intercept_, pprint(enet.coef_))
    yhat_train = enet.predict(train_X)
    yhat_test = enet.predict(test_X)
    
    return model, yhat_train, yhat_test
开发者ID:jmmcd,项目名称:PonyGE2,代码行数:19,代码来源:baselines.py

示例7: ElasticNetRegression

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import predict [as 别名]
def ElasticNetRegression(input_dict):
	# 	from sklearn.datasets import load_iris
# 	from sklearn import tree
# 	iris = load_iris()
# 	clf = tree.DecisionTreeClassifier()
# 	clf = clf.fit(iris.data, iris.target)	
	from sklearn.datasets import  load_diabetes
	dta = load_diabetes()
	n_sample = dta.data
	n_feature = dta.target
	print "*******SAMPLES********"
	print n_sample
	print "******FEARTURES*******"
	print n_feature
	from sklearn.linear_model import ElasticNet
	rgs = ElasticNet().fit(n_sample, n_feature)
	print rgs
	print rgs.predict(n_sample)
开发者ID:anirudhvenkats,项目名称:clowdflows,代码行数:20,代码来源:test.py

示例8: fit_model_12

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import predict [as 别名]
    def fit_model_12(self,toWrite=False):
        model = ElasticNet(alpha=1.0)

        for data in self.cv_data:
            X_train, X_test, Y_train, Y_test = data
            model.fit(X_train,Y_train)
            pred = model.predict(X_test)
            print("Model 12 score %f" % (logloss(Y_test,pred),))

        if toWrite:
            f2 = open('model12/model.pkl','w')
            pickle.dump(model,f2)
            f2.close()
开发者ID:JakeMick,项目名称:kaggle,代码行数:15,代码来源:days_work.py

示例9: predict_linear

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import predict [as 别名]
 def predict_linear(self, enet=True):
     """How well can we do on this SRFF with a linear regression
     (with optional elastic-net regularisation)?"""
     if enet:
         clf = ElasticNet()
     else:
         clf = LinearRegression()
     # we have to transpose X here because sklearn uses the
     # opposite order (rows v columns). maybe this is a sign that
     # I'm using the wrong order.
     clf.fit(self.train_X.T, self.train_y)
     yhat = clf.predict(self.test_X.T)
     err = self.defn(self.test_y, yhat)
     return clf.intercept_, clf.coef_, err
开发者ID:jmmcd,项目名称:PODI,代码行数:16,代码来源:fitness.py

示例10: report_orig_en

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import predict [as 别名]
def report_orig_en():
    # Train elastic net on original training data
    en = ElasticNet()
    st = time()
    en.fit(trainData.T, trainLabels)
    elapsed_en_fit = time() - st

    # Predict labels for original validation data
    st = time()
    y_pred = en.predict(validationData.T)
    elapsed_en_pred = time() - st

    # Report performance
    mse_orig = metrics.mean_squared_error(validationLabels, y_pred)
    return mse_orig, elapsed_en_fit, 0.
开发者ID:kafluette,项目名称:fastfood,代码行数:17,代码来源:report_en.py

示例11: create_ml_classifier

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import predict [as 别名]
def create_ml_classifier(df):
    import operator
    X = np.array(df.drop('base_ip_release',1))
    y = np.array(df['base_ip_release'])
    #clf = LinearRegression()
    clf = ElasticNet(alpha=1,l1_ratio=0.5)
    #clf = Ridge(alpha=2)
    # train_X,test_X,train_y,test_y = cross_validation.train_test_split(X,y,train_size=0.9)
    #
    #
    # sc = StandardScaler()
    # sc.fit(train_X)
    # X_train_std = sc.transform(train_X)
    # X_test_std = sc.transform(test_X)
    #
    # clf.fit(X_train_std,train_y)
    # print clf.predict(X_test_std)
    # print accuracy_score(test_y,clf.predict(X_test_std))


    c = np.zeros(len(X)/10)
    kf = k(len(y),n_folds=10)
    c = 0
    min_dict = {}
    get_error = []
    for train,test in kf:
        get_clif = clf.fit(X[train],y[train])
        p = clf.predict(X[test])
        #print p
        e = (p - y[test])
        #print e, len(e)
        t =  np.dot(e,e)
        # print t
        c += t
        # print c
        #print p, y[test]
        min_dict[t] = get_clif
        get_error.append(t)
    #print min_dict
    min_error = min(get_error)
    print sorted(min_dict.items(),key=operator.itemgetter(0))
    print min_dict[min_error]
    print c
    print np.sqrt(c/len(X))
    return min_dict[min_error]
开发者ID:JustinLin88,项目名称:scripts,代码行数:47,代码来源:real_predict_ml.py

示例12: assert_regression_result

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import predict [as 别名]
def assert_regression_result(results, tol):
    regression_results = [r for r in results if
                          r["param"]["objective"] == "reg:linear"]
    for res in regression_results:
        X = scale(res["dataset"].X,
                  with_mean=isinstance(res["dataset"].X, np.ndarray))
        y = res["dataset"].y
        reg_alpha = res["param"]["alpha"]
        reg_lambda = res["param"]["lambda"]
        pred = res["bst"].predict(xgb.DMatrix(X))
        weights = xgb_get_weights(res["bst"])[1:]
        enet = ElasticNet(alpha=reg_alpha + reg_lambda,
                          l1_ratio=reg_alpha / (reg_alpha + reg_lambda))
        enet.fit(X, y)
        enet_pred = enet.predict(X)
        assert np.isclose(weights, enet.coef_, rtol=tol,
                          atol=tol).all(), (weights, enet.coef_)
        assert np.isclose(enet_pred, pred, rtol=tol, atol=tol).all(), (
            res["dataset"].name, enet_pred[:5], pred[:5])
开发者ID:rfru,项目名称:xgboost,代码行数:21,代码来源:test_linear.py

示例13: Lasso

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import predict [as 别名]
def Lasso():
    from sklearn.linear_model import Lasso
    from sklearn.metrics import r2_score
    alpha = 0.1
    lasso = Lasso(alpha=alpha)
    trainDat = shortData
    trainLab = shortLabels
    
    
    lassoPred = lasso.fit(trainDat,trainLab)
    labPredict = lassoPred.predict(testDat)
    r2val = r2_score(testLab,labPredict)
    print(lasso)
    print "r^2 for lasso testing is: ", r2val
    
    from sklearn.linear_model import ElasticNet
    enet = ElasticNet(alpha=alpha, l1_ratio = 0.7)
    enetPred = enet.fit(trainDat, trainLab)
    labPredict_enet = enet.predict(testDat)
    r2val_enet = r2_score(testLab, labPredict_enet)
    print enet
    print "r^2 for enet testing is: ", r2val_enet
开发者ID:mattrozak,项目名称:448-magic,代码行数:24,代码来源:startup.py

示例14: load_svmlight_file

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import predict [as 别名]
# It is made available under the MIT License

import numpy as np
from sklearn.datasets import load_svmlight_file
from sklearn.cross_validation import KFold
from sklearn.linear_model import ElasticNet
from sklearn.metrics import mean_squared_error, r2_score

data, target = load_svmlight_file('data/E2006.train')

# Edit the lines below if you want to switch method:
# met = LinearRegression(fit_intercept=True)
met = ElasticNet(fit_intercept=True, alpha=.1)

kf = KFold(len(target), n_folds=5)
pred = np.zeros_like(target)
for train, test in kf:
    met.fit(data[train], target[train])
    pred[test] = met.predict(data[test])

print('[EN 0.1] RMSE on testing (5 fold), {:.2}'.format(np.sqrt(mean_squared_error(target, pred))))
print('[EN 0.1] R2 on testing (5 fold), {:.2}'.format(r2_score(target, pred)))
print('')

met.fit(data, target)
pred = met.predict(data)
print('[EN 0.1] RMSE on training, {:.2}'.format(np.sqrt(mean_squared_error(target, pred))))
print('[EN 0.1] R2 on training, {:.2}'.format(r2_score(target, pred)))


开发者ID:e42s,项目名称:BuildingMachineLearningSystemsWithPython,代码行数:30,代码来源:predict10k_en.py

示例15: load_boston

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import predict [as 别名]
from sklearn.cross_validation import KFold
from sklearn.linear_model import LinearRegression, ElasticNet
import numpy as np
from sklearn.datasets import load_boston
boston = load_boston()
x = np.array([np.concatenate((v, [1])) for v in boston.data])
y = boston.target
FIT_EN = False

if FIT_EN:
    model = ElasticNet(fit_intercept=True, alpha=0.5)
else:
    model = LinearRegression(fit_intercept=True)
model.fit(x, y)
p = np.array([model.predict(xi) for xi in x])
e = p - y
total_error = np.dot(e, e)
rmse_train = np.sqrt(total_error / len(p))

kf = KFold(len(x), n_folds=10)
err = 0
for train, test in kf:
    model.fit(x[train], y[train])
    p = np.array([model.predict(xi) for xi in x[test]])
    e = p - y[test]
    err += np.dot(e, e)

rmse_10cv = np.sqrt(err / len(x))
print('RMSE on training: {}'.format(rmse_train))
print('RMSE on 10-fold CV: {}'.format(rmse_10cv))
开发者ID:2011200799,项目名称:BuildingMachineLearningSystemsWithPython,代码行数:32,代码来源:cv10_lr.py


注:本文中的sklearn.linear_model.ElasticNet.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。