当前位置: 首页>>代码示例>>Python>>正文


Python ElasticNet.fit方法代码示例

本文整理汇总了Python中sklearn.linear_model.ElasticNet.fit方法的典型用法代码示例。如果您正苦于以下问题:Python ElasticNet.fit方法的具体用法?Python ElasticNet.fit怎么用?Python ElasticNet.fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.linear_model.ElasticNet的用法示例。


在下文中一共展示了ElasticNet.fit方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: elasticNet

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import fit [as 别名]
def elasticNet(X,y):

    print("\n### ~~~~~~~~~~~~~~~~~~~~ ###")
    print("Lasso Regression")

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    myDegree = 40
    polynomialFeatures = PolynomialFeatures(degree=myDegree, include_bias=False)
    Xp = polynomialFeatures.fit_transform(X)

    myScaler = StandardScaler()
    scaled_Xp = myScaler.fit_transform(Xp)

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    elasticNet = ElasticNet(alpha=1e-7,l1_ratio=0.5)
    elasticNet.fit(scaled_Xp,y)

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    dummyX = np.arange(0,2,0.01)
    dummyX = dummyX.reshape((dummyX.shape[0],1))
    dummyXp = polynomialFeatures.fit_transform(dummyX)
    scaled_dummyXp = myScaler.transform(dummyXp)
    dummyY = elasticNet.predict(scaled_dummyXp)

    outputFILE = 'plot-elasticNet.png'
    fig, ax = plt.subplots()
    fig.set_size_inches(h = 6.0, w = 10.0)
    ax.axis([0,2,0,15])
    ax.scatter(X,y,color="black",s=10.0)
    ax.plot(dummyX, dummyY, color='red', linewidth=1.5)
    plt.savefig(filename = outputFILE, bbox_inches='tight', pad_inches=0.2, dpi = 600)

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    return( None )
开发者ID:paradisepilot,项目名称:statistics,代码行数:36,代码来源:elasticNet.py

示例2: check_ElasticNet

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import fit [as 别名]
def check_ElasticNet(X, y, pred, tol, reg_alpha, reg_lambda, weights):
    enet = ElasticNet(alpha=reg_alpha + reg_lambda,
                      l1_ratio=reg_alpha / (reg_alpha + reg_lambda))
    enet.fit(X, y)
    enet_pred = enet.predict(X)
    assert np.isclose(weights, enet.coef_, rtol=tol, atol=tol).all()
    assert np.isclose(enet_pred, pred, rtol=tol, atol=tol).all()
开发者ID:amitkr492,项目名称:MACHINE_LEARNING,代码行数:9,代码来源:test_linear.py

示例3: enet

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import fit [as 别名]
def enet(a):
    print ("Doing elastic net")
    clf3 = ElasticNet(alpha=a)
    clf3.fit(base_X, base_Y)
    print ("Score = %f" % clf3.score(base_X, base_Y))
    clf3_pred = clf3.predict(X_test)
    write_to_file("elastic.csv", clf3_pred)
开发者ID:abbylyons,项目名称:181practicals,代码行数:9,代码来源:enetTests.py

示例4: report_ff_en

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import fit [as 别名]
def report_ff_en():
    # Fastfood approximation of Gaussian kernel
    para = FastfoodPara(n, d)
    st = time()
    PHI_train, _ = FastfoodForKernel(trainData, para, sgm)
    elapsed_ff_kern_train = time() - st
    st = time()
    PHI_valid, _ = FastfoodForKernel(validationData, para, sgm)
    elapsed_ff_kern_valid = time() - st

    # Train elastic net on projected training data
    en = ElasticNet()
    st = time()
    en.fit(PHI_train.T, trainLabels)
    elapsed_en_fit = time() - st

    # Predict labels for projected validation data
    st = time()
    y_pred = en.predict(PHI_valid.T)
    elapsed_en_pred = time() - st

    # Report performance
    mse_proj = metrics.mean_squared_error(validationLabels, y_pred)
    # print("For projected data, MSE = {:0.4g}.".format(mse_proj))

    return mse_proj, elapsed_en_fit, elapsed_ff_kern_train
开发者ID:kafluette,项目名称:fastfood,代码行数:28,代码来源:report_en.py

示例5: enet_granger_causality_test

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import fit [as 别名]
def enet_granger_causality_test(X_t, y_t, top_df, max_iter=10000000):
    """
    Return the cv-parameters tested across the whole data
    :param X_t:
    :param y_t:
    :param top_df:
    :return: res_df, test_betas
    """

    test_errs = np.zeros(len(top_df))
    scores = np.zeros(len(top_df))
    dfs = np.zeros(len(top_df))

    test_coefs = np.zeros((len(top_df), X_t.shape[1]))
    for i in range(len(top_df)):
        alpha = top_df.iloc[i]["alpha"]
        lambda_min = top_df.iloc[i]["lambda.min"]
        enet = ElasticNet(l1_ratio=alpha, alpha=lambda_min, max_iter=max_iter)
        enet.fit(X_t, y_t)
        y_pred = enet.predict(X_t)
        test_errs[i] = np.average((y_t - y_pred)**2)
        scores[i] = enet.score(X_t, y_t)
        test_coefs[i] = enet.coef_

        dfs[i] = len(np.where(enet.coef_)[0])

    top_df["test_err"] = test_errs
    top_df["score"] = scores
    top_df["df"] = dfs


    return top_df, test_coefs
开发者ID:lujonathanh,项目名称:v-causal-snps,代码行数:34,代码来源:CausalTests.py

示例6: elastic_net

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import fit [as 别名]
    def elastic_net(self):
        enet = ElasticNet()
        # features = ['season', 'holiday', 'workingday', 'weather', 'humidity', 'temp', 'windspeed', 'hour', 'month', 'year', 'day_of_week']
        features = ['season', 'workingday', 'weather', 'humidity', 'windspeed', 'hour', 'month', 'year', 'day_of_week']
        enet = ElasticNetCV()
        enet.fit(self.train[features], self.train['log-count'])

        return self.predict(enet, "Elastic Net", features)
开发者ID:xtina,项目名称:bikeshare,代码行数:10,代码来源:doug.py

示例7: train_model

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import fit [as 别名]
def train_model(features_filename):
    training_data = np.loadtxt(features_filename, delimiter=",")

    X = training_data[:, :-1]
    y = training_data[:, -1]

    model = ElasticNet(alpha=1.0, l1_ratio=0.5, fit_intercept=True,
                       precompute='auto', rho=None)
    model.fit(X, y)

    return model
开发者ID:drusk,项目名称:kaggle-walmart-sales-forecasting,代码行数:13,代码来源:train_elasticnet.py

示例8: fit_model_12

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import fit [as 别名]
    def fit_model_12(self,toWrite=False):
        model = ElasticNet(alpha=1.0)

        for data in self.cv_data:
            X_train, X_test, Y_train, Y_test = data
            model.fit(X_train,Y_train)
            pred = model.predict(X_test)
            print("Model 12 score %f" % (logloss(Y_test,pred),))

        if toWrite:
            f2 = open('model12/model.pkl','w')
            pickle.dump(model,f2)
            f2.close()
开发者ID:JakeMick,项目名称:kaggle,代码行数:15,代码来源:days_work.py

示例9: predict_linear

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import fit [as 别名]
 def predict_linear(self, enet=True):
     """How well can we do on this SRFF with a linear regression
     (with optional elastic-net regularisation)?"""
     if enet:
         clf = ElasticNet()
     else:
         clf = LinearRegression()
     # we have to transpose X here because sklearn uses the
     # opposite order (rows v columns). maybe this is a sign that
     # I'm using the wrong order.
     clf.fit(self.train_X.T, self.train_y)
     yhat = clf.predict(self.test_X.T)
     err = self.defn(self.test_y, yhat)
     return clf.intercept_, clf.coef_, err
开发者ID:jmmcd,项目名称:PODI,代码行数:16,代码来源:fitness.py

示例10: sklean_linear_model_elastic_net

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import fit [as 别名]
def sklean_linear_model_elastic_net():
    en = ElasticNet(fit_intercept=True, alpha=0.5)
    boston = load_boston()
    x = boston.data
    y = boston.target

    kf = KFold(len(x), n_folds=10)
    err = 0
    for train, test in kf:
        en.fit(x[train], y[train])
        p = map(en.predict, x[test])
        e = p - y[test]
        err += np.sum(e * e)
    rmse_10cv = np.sqrt(err / len(x))
    print "RMSE on 10-fold CV: {}".format(rmse_10cv)
开发者ID:achiku,项目名称:syakyou,代码行数:17,代码来源:boston.py

示例11: report_orig_en

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import fit [as 别名]
def report_orig_en():
    # Train elastic net on original training data
    en = ElasticNet()
    st = time()
    en.fit(trainData.T, trainLabels)
    elapsed_en_fit = time() - st

    # Predict labels for original validation data
    st = time()
    y_pred = en.predict(validationData.T)
    elapsed_en_pred = time() - st

    # Report performance
    mse_orig = metrics.mean_squared_error(validationLabels, y_pred)
    return mse_orig, elapsed_en_fit, 0.
开发者ID:kafluette,项目名称:fastfood,代码行数:17,代码来源:report_en.py

示例12: fit_enet

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import fit [as 别名]
def fit_enet(train_X, train_y, test_X):
    """
    Use linear regression to predict. Elastic net is LR with L1 and L2
    regularisation.
    
    :param train_X:
    :param train_y:
    :param test_X:
    :return:
    """
    enet = ElasticNet()
    enet.fit(train_X, train_y)
    model = "ElasticNet int %.2f coefs %s" % (enet.intercept_, pprint(enet.coef_))
    yhat_train = enet.predict(train_X)
    yhat_test = enet.predict(test_X)
    
    return model, yhat_train, yhat_test
开发者ID:jmmcd,项目名称:PonyGE2,代码行数:19,代码来源:baselines.py

示例13: assert_regression_result

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import fit [as 别名]
def assert_regression_result(results, tol):
    regression_results = [r for r in results if
                          r["param"]["objective"] == "reg:linear"]
    for res in regression_results:
        X = scale(res["dataset"].X,
                  with_mean=isinstance(res["dataset"].X, np.ndarray))
        y = res["dataset"].y
        reg_alpha = res["param"]["alpha"]
        reg_lambda = res["param"]["lambda"]
        pred = res["bst"].predict(xgb.DMatrix(X))
        weights = xgb_get_weights(res["bst"])[1:]
        enet = ElasticNet(alpha=reg_alpha + reg_lambda,
                          l1_ratio=reg_alpha / (reg_alpha + reg_lambda))
        enet.fit(X, y)
        enet_pred = enet.predict(X)
        assert np.isclose(weights, enet.coef_, rtol=tol,
                          atol=tol).all(), (weights, enet.coef_)
        assert np.isclose(enet_pred, pred, rtol=tol, atol=tol).all(), (
            res["dataset"].name, enet_pred[:5], pred[:5])
开发者ID:rfru,项目名称:xgboost,代码行数:21,代码来源:test_linear.py

示例14: __init__

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import fit [as 别名]
    def __init__(self, Dict_TrainingData, Flt_Lambda, Flt_L1):
        # Only for two class
        # Dict_Trainingdata
            # Key : 0,1
            # Row : data
        self.Data1 = Dict_TrainingData[0] # N by 256 matrix
        self.Data2 = Dict_TrainingData[1] # V by 256 matrix
        self.Dim = len(self.Data1[0]) # 256

        self.X = np.concatenate((self.Data1, self.Data2), axis=0) # N / V augmented matrix
        self.X = self.X - np.mean(self.X,axis=0)

        self.NumClass1 = len(self.Data1) # N
        self.NumClass2 = len(self.Data2) # V
        self.TotalNum = self.NumClass1 + self.NumClass2

        self.Y = self.Construct_Y()
        self.D = np.dot(np.transpose(self.Y), self.Y) / float(self.TotalNum) # P
        self.Q = np.ones((2,1))

        InitialTheta = np.array([2,5])
        I = np.eye(2)
        Theta = np.dot(I - np.dot(np.dot(self.Q, np.transpose(self.Q)), self.D ), InitialTheta)
        Theta /= np.sqrt(np.dot(np.dot(np.transpose(Theta), self.D), Theta))

        MaxIter = 10000
        PrevTheta = InitialTheta
        PrevB = np.ones(self.Dim)
        for idx in range(MaxIter):
            NewResp = np.dot(self.Y, Theta)
            elas = ElasticNet(alpha=Flt_Lambda, l1_ratio=Flt_L1)
            #
            # # Compute Coefficient
            # B = lasso.fit(X=self.X, y= NewResp).coef_
            B = elas.fit(X=self.X, y= NewResp).coef_
            # print B
            #
            # New OptScore
            Part1 = I - np.dot(np.dot(self.Q, np.transpose(self.Q)),self.D)
            Part2 = np.dot(Part1, np.linalg.inv(self.D))
            Part3 = np.dot(Part2, np.transpose(self.Y))
            WaveTheta = np.dot(np.dot(Part3, self.X), B)
            # print WaveTheta
            Theta = WaveTheta / np.sqrt(np.dot(np.dot(np.transpose(WaveTheta),self.D),WaveTheta))

            if np.sum(np.abs(B - PrevB)) < 1e-6:
                break
            else:
                PrevB = B

        # print B
        self.B = B 
开发者ID:HansJung,项目名称:ECG_Monitoring,代码行数:54,代码来源:Class_SparseLDA.py

示例15: lasso

# 需要导入模块: from sklearn.linear_model import ElasticNet [as 别名]
# 或者: from sklearn.linear_model.ElasticNet import fit [as 别名]
def lasso(filename, x_train_orig, x_devel_orig, x_test_orig, lab_train_orig, lab_devel_orig, lab_test_orig):

    # Normalize the data
    scaler_data = preprocessing.StandardScaler().fit(x_train_orig.toarray())
    x_train = scaler_data.transform(x_train_orig.toarray())
    x_devel = scaler_data.transform(x_devel_orig.toarray())
    x_test = scaler_data.transform(x_test_orig.toarray())

    scaler_lab = preprocessing.StandardScaler().fit(lab_train_orig)
    lab_train = scaler_lab.transform(lab_train_orig)
    lab_devel = scaler_lab.transform(lab_devel_orig)
    lab_test = scaler_lab.transform(lab_test_orig)

    # Elastic Net

    clf = ElasticNet(alpha = 0.025, l1_ratio = 0.7)
    clf.fit (x_train, lab_train)
    nz = (clf.coef_ != 0)

    # Se guardan los ficheros de parametros resultantes
    dump_svmlight_file(x_train_orig[:, nz], lab_train_orig, filename+"_elasso.train.libsvm", zero_based=False, comment=None, query_id=None)
    dump_svmlight_file(x_devel_orig[:, nz], lab_devel_orig, filename+"_elasso.devel.libsvm", zero_based=False, comment=None, query_id=None)
    dump_svmlight_file(x_test_orig[:, nz], lab_test_orig, filename+"_elasso.test.libsvm", zero_based=False, comment=None, query_id=None)
开发者ID:clara-jr,项目名称:Parkinson-Machine-Learning,代码行数:25,代码来源:regression_elasso_svr.py


注:本文中的sklearn.linear_model.ElasticNet.fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。