当前位置: 首页>>代码示例>>Python>>正文


Python SimpleImputer.transform方法代码示例

本文整理汇总了Python中sklearn.impute.SimpleImputer.transform方法的典型用法代码示例。如果您正苦于以下问题:Python SimpleImputer.transform方法的具体用法?Python SimpleImputer.transform怎么用?Python SimpleImputer.transform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.impute.SimpleImputer的用法示例。


在下文中一共展示了SimpleImputer.transform方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_imputation_error_sparse_0

# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import transform [as 别名]
def test_imputation_error_sparse_0(strategy):
    # check that error are raised when missing_values = 0 and input is sparse
    X = np.ones((3, 5))
    X[0] = 0
    X = sparse.csc_matrix(X)

    imputer = SimpleImputer(strategy=strategy, missing_values=0)
    with pytest.raises(ValueError, match="Provide a dense array"):
        imputer.fit(X)

    imputer.fit(X.toarray())
    with pytest.raises(ValueError, match="Provide a dense array"):
        imputer.transform(X)
开发者ID:psorianom,项目名称:scikit-learn,代码行数:15,代码来源:test_impute.py

示例2: data_preprocessing

# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import transform [as 别名]
def data_preprocessing(dataset):
    # import data
    # dataset = pd.read_csv('data/train.csv')
    X = dataset.iloc[:, 2:13].values
    Y = dataset.iloc[:, 1].values

    # replace missing data
    from sklearn.impute import SimpleImputer
    imputer = SimpleImputer(strategy= "mean", missing_values = np.nan)
    imputer = imputer.fit(X[:,3])
   
    #X = imputer.fit_transform(X[:, 5]) Testing out new code
    X[:,3] = imputer.transform(X[:,3])
开发者ID:kbj500,项目名称:dss-titanic,代码行数:15,代码来源:data_preprocessing.py

示例3: test_imputation_pickle

# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import transform [as 别名]
def test_imputation_pickle():
    # Test for pickling imputers.
    import pickle

    X = sparse_random_matrix(100, 100, density=0.10)

    for strategy in ["mean", "median", "most_frequent"]:
        imputer = SimpleImputer(missing_values=0, strategy=strategy)
        imputer.fit(X)

        imputer_pickled = pickle.loads(pickle.dumps(imputer))

        assert_array_almost_equal(
            imputer.transform(X.copy()),
            imputer_pickled.transform(X.copy()),
            err_msg="Fail to transform the data after pickling "
            "(strategy = %s)" % (strategy)
        )
开发者ID:BasilBeirouti,项目名称:scikit-learn,代码行数:20,代码来源:test_impute.py

示例4: test_iterative_imputer_missing_at_transform

# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import transform [as 别名]
def test_iterative_imputer_missing_at_transform(strategy):
    rng = np.random.RandomState(0)
    n = 100
    d = 10
    X_train = rng.randint(low=0, high=3, size=(n, d))
    X_test = rng.randint(low=0, high=3, size=(n, d))

    X_train[:, 0] = 1  # definitely no missing values in 0th column
    X_test[0, 0] = 0  # definitely missing value in 0th column

    imputer = IterativeImputer(missing_values=0,
                               max_iter=1,
                               initial_strategy=strategy,
                               random_state=rng).fit(X_train)
    initial_imputer = SimpleImputer(missing_values=0,
                                    strategy=strategy).fit(X_train)

    # if there were no missing values at time of fit, then imputer will
    # only use the initial imputer for that feature at transform
    assert_allclose(imputer.transform(X_test)[:, 0],
                    initial_imputer.transform(X_test)[:, 0])
开发者ID:psorianom,项目名称:scikit-learn,代码行数:23,代码来源:test_impute.py

示例5: test_mice_missing_at_transform

# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import transform [as 别名]
def test_mice_missing_at_transform(strategy):
    rng = np.random.RandomState(0)
    n = 100
    d = 10
    X_train = rng.randint(low=0, high=3, size=(n, d))
    X_test = rng.randint(low=0, high=3, size=(n, d))

    X_train[:, 0] = 1  # definitely no missing values in 0th column
    X_test[0, 0] = 0  # definitely missing value in 0th column

    mice = MICEImputer(missing_values=0,
                       n_imputations=1,
                       n_burn_in=1,
                       initial_strategy=strategy,
                       random_state=rng).fit(X_train)
    initial_imputer = SimpleImputer(missing_values=0,
                                    strategy=strategy).fit(X_train)

    # if there were no missing values at time of fit, then mice will
    # only use the initial imputer for that feature at transform
    assert np.all(mice.transform(X_test)[:, 0] ==
                  initial_imputer.transform(X_test)[:, 0])
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:24,代码来源:test_impute.py

示例6: _check_statistics

# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import transform [as 别名]
def _check_statistics(X, X_true,
                      strategy, statistics, missing_values):
    """Utility function for testing imputation for a given strategy.

    Test:
        - along the two axes
        - with dense and sparse arrays

    Check that:
        - the statistics (mean, median, mode) are correct
        - the missing values are imputed correctly"""

    err_msg = "Parameters: strategy = %s, missing_values = %s, " \
              "axis = {0}, sparse = {1}" % (strategy, missing_values)

    assert_ae = assert_array_equal
    if X.dtype.kind == 'f' or X_true.dtype.kind == 'f':
        assert_ae = assert_array_almost_equal

    # Normal matrix
    imputer = SimpleImputer(missing_values, strategy=strategy)
    X_trans = imputer.fit(X).transform(X.copy())
    assert_ae(imputer.statistics_, statistics,
              err_msg=err_msg.format(0, False))
    assert_ae(X_trans, X_true, err_msg=err_msg.format(0, False))

    # Sparse matrix
    imputer = SimpleImputer(missing_values, strategy=strategy)
    imputer.fit(sparse.csc_matrix(X))
    X_trans = imputer.transform(sparse.csc_matrix(X.copy()))

    if sparse.issparse(X_trans):
        X_trans = X_trans.toarray()

    assert_ae(imputer.statistics_, statistics,
              err_msg=err_msg.format(0, True))
    assert_ae(X_trans, X_true, err_msg=err_msg.format(0, True))
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:39,代码来源:test_impute.py

示例7: scatter_matrix

# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import transform [as 别名]
    from pandas.tools.plotting import scatter_matrix
    attributes = ["median_house_value", "median_income", "total_rooms", "housing_median_age"]
    # scatter_matrix(housing[attributes], figsize=(12, 8))
    # plt.show()

    housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
    housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"]
    housing["population_per_household"]=housing["population"]/housing["households"]

    housing_num = housing.drop("ocean_proximity", axis=1)

    from sklearn.impute import SimpleImputer
    imputer = SimpleImputer(strategy="median")
    imputer.fit(housing_num)
    X = imputer.transform(housing_num)

    housing_tr = pd.DataFrame(X, columns=housing_num.columns)

    # from sklearn.preprocessing import LabelEncoder
    # encoder = LabelEncoder()
    housing_cat = housing["ocean_proximity"]
    # housing_cat_encoded = encoder.fit_transform(housing_cat)

    # from sklearn.preprocessing import OneHotEncoder
    # encoder = OneHotEncoder()
    # housing_cat_1hot = encoder.fit_transform(housing_cat_encoded.reshape(-1,1))

    from sklearn.preprocessing import LabelBinarizer
    encoder = LabelBinarizer()
    housing_cat_1hot = encoder.fit_transform(housing_cat)
开发者ID:henyihanwobushi,项目名称:henyihanwobushi.github.io,代码行数:32,代码来源:download_the_data.py


注:本文中的sklearn.impute.SimpleImputer.transform方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。