本文整理汇总了Python中sklearn.impute.SimpleImputer.fit_transform方法的典型用法代码示例。如果您正苦于以下问题:Python SimpleImputer.fit_transform方法的具体用法?Python SimpleImputer.fit_transform怎么用?Python SimpleImputer.fit_transform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.impute.SimpleImputer
的用法示例。
在下文中一共展示了SimpleImputer.fit_transform方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_imputation_error_invalid_strategy
# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import fit_transform [as 别名]
def test_imputation_error_invalid_strategy(strategy):
X = np.ones((3, 5))
X[0, 0] = np.nan
with pytest.raises(ValueError, match=str(strategy)):
imputer = SimpleImputer(strategy=strategy)
imputer.fit_transform(X)
示例2: test_imputation_deletion_warning
# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import fit_transform [as 别名]
def test_imputation_deletion_warning(strategy):
X = np.ones((3, 5))
X[:, 0] = np.nan
with pytest.warns(UserWarning, match="Deleting"):
imputer = SimpleImputer(strategy=strategy, verbose=True)
imputer.fit_transform(X)
示例3: test_imputation_mean_median_error_invalid_type
# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import fit_transform [as 别名]
def test_imputation_mean_median_error_invalid_type(strategy, dtype):
X = np.array([["a", "b", 3],
[4, "e", 6],
["g", "h", 9]], dtype=dtype)
with pytest.raises(ValueError, match="non-numeric data"):
imputer = SimpleImputer(strategy=strategy)
imputer.fit_transform(X)
示例4: test_imputation_constant_error_invalid_type
# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import fit_transform [as 别名]
def test_imputation_constant_error_invalid_type(X_data, missing_value):
# Verify that exceptions are raised on invalid fill_value type
X = np.full((3, 5), X_data, dtype=float)
X[0, 0] = missing_value
with pytest.raises(ValueError, match="imputing numerical"):
imputer = SimpleImputer(missing_values=missing_value,
strategy="constant",
fill_value="x")
imputer.fit_transform(X)
示例5: test_imputation_shape
# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import fit_transform [as 别名]
def test_imputation_shape():
# Verify the shapes of the imputed matrix for different strategies.
X = np.random.randn(10, 2)
X[::2] = np.nan
for strategy in ['mean', 'median', 'most_frequent']:
imputer = SimpleImputer(strategy=strategy)
X_imputed = imputer.fit_transform(X)
assert_equal(X_imputed.shape, (10, 2))
X_imputed = imputer.fit_transform(sparse.csr_matrix(X))
assert_equal(X_imputed.shape, (10, 2))
示例6: test_imputation_shape
# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import fit_transform [as 别名]
def test_imputation_shape():
# Verify the shapes of the imputed matrix for different strategies.
X = np.random.randn(10, 2)
X[::2] = np.nan
for strategy in ['mean', 'median', 'most_frequent', "constant"]:
imputer = SimpleImputer(strategy=strategy)
X_imputed = imputer.fit_transform(sparse.csr_matrix(X))
assert X_imputed.shape == (10, 2)
X_imputed = imputer.fit_transform(X)
assert X_imputed.shape == (10, 2)
iterative_imputer = IterativeImputer(initial_strategy=strategy)
X_imputed = iterative_imputer.fit_transform(X)
assert X_imputed.shape == (10, 2)
示例7: test_imputation_add_indicator
# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import fit_transform [as 别名]
def test_imputation_add_indicator(marker):
X = np.array([
[marker, 1, 5, marker, 1],
[2, marker, 1, marker, 2],
[6, 3, marker, marker, 3],
[1, 2, 9, marker, 4]
])
X_true = np.array([
[3., 1., 5., 1., 1., 0., 0., 1.],
[2., 2., 1., 2., 0., 1., 0., 1.],
[6., 3., 5., 3., 0., 0., 1., 1.],
[1., 2., 9., 4., 0., 0., 0., 1.]
])
imputer = SimpleImputer(missing_values=marker, add_indicator=True)
X_trans = imputer.fit_transform(X)
assert_allclose(X_trans, X_true)
assert_array_equal(imputer.indicator_.features_, np.array([0, 1, 2, 3]))
示例8: __call__
# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import fit_transform [as 别名]
def __call__(self, data):
from Orange.data.sql.table import SqlTable
if isinstance(data, SqlTable):
return Impute()(data)
imputer = SimpleImputer(strategy=self.strategy)
X = imputer.fit_transform(data.X)
# Create new variables with appropriate `compute_value`, but
# drop the ones which do not have valid `imputer.statistics_`
# (i.e. all NaN columns). `sklearn.preprocessing.Imputer` already
# drops them from the transformed X.
features = [impute.Average()(data, var, value)
for var, value in zip(data.domain.attributes,
imputer.statistics_)
if not np.isnan(value)]
assert X.shape[1] == len(features)
domain = Orange.data.Domain(features, data.domain.class_vars,
data.domain.metas)
new_data = data.transform(domain)
new_data.X = X
return new_data
示例9: test_simple_imputation_add_indicator_sparse_matrix
# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import fit_transform [as 别名]
def test_simple_imputation_add_indicator_sparse_matrix(arr_type):
X_sparse = arr_type([
[np.nan, 1, 5],
[2, np.nan, 1],
[6, 3, np.nan],
[1, 2, 9]
])
X_true = np.array([
[3., 1., 5., 1., 0., 0.],
[2., 2., 1., 0., 1., 0.],
[6., 3., 5., 0., 0., 1.],
[1., 2., 9., 0., 0., 0.],
])
imputer = SimpleImputer(missing_values=np.nan, add_indicator=True)
X_trans = imputer.fit_transform(X_sparse)
assert sparse.issparse(X_trans)
assert X_trans.shape == X_true.shape
assert_allclose(X_trans.toarray(), X_true)
示例10: test_imputation_constant_object
# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import fit_transform [as 别名]
def test_imputation_constant_object(marker):
# Test imputation using the constant strategy on objects
X = np.array([
[marker, "a", "b", marker],
["c", marker, "d", marker],
["e", "f", marker, marker],
["g", "h", "i", marker]
], dtype=object)
X_true = np.array([
["missing", "a", "b", "missing"],
["c", "missing", "d", "missing"],
["e", "f", "missing", "missing"],
["g", "h", "i", "missing"]
], dtype=object)
imputer = SimpleImputer(missing_values=marker, strategy="constant",
fill_value="missing")
X_trans = imputer.fit_transform(X)
assert_array_equal(X_trans, X_true)
示例11: test_imputation_constant_integer
# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import fit_transform [as 别名]
def test_imputation_constant_integer():
# Test imputation using the constant strategy on integers
X = np.array([
[-1, 2, 3, -1],
[4, -1, 5, -1],
[6, 7, -1, -1],
[8, 9, 0, -1]
])
X_true = np.array([
[0, 2, 3, 0],
[4, 0, 5, 0],
[6, 7, 0, 0],
[8, 9, 0, 0]
])
imputer = SimpleImputer(missing_values=-1, strategy="constant",
fill_value=0)
X_trans = imputer.fit_transform(X)
assert_array_equal(X_trans, X_true)
示例12: test_imputation_constant_pandas
# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import fit_transform [as 别名]
def test_imputation_constant_pandas(dtype):
# Test imputation using the constant strategy on pandas df
pd = pytest.importorskip("pandas")
f = io.StringIO("Cat1,Cat2,Cat3,Cat4\n"
",i,x,\n"
"a,,y,\n"
"a,j,,\n"
"b,j,x,")
df = pd.read_csv(f, dtype=dtype)
X_true = np.array([
["missing_value", "i", "x", "missing_value"],
["a", "missing_value", "y", "missing_value"],
["a", "j", "missing_value", "missing_value"],
["b", "j", "x", "missing_value"]
], dtype=object)
imputer = SimpleImputer(strategy="constant")
X_trans = imputer.fit_transform(df)
assert_array_equal(X_trans, X_true)
示例13: test_imputation_constant_float
# 需要导入模块: from sklearn.impute import SimpleImputer [as 别名]
# 或者: from sklearn.impute.SimpleImputer import fit_transform [as 别名]
def test_imputation_constant_float(array_constructor):
# Test imputation using the constant strategy on floats
X = np.array([
[np.nan, 1.1, 0, np.nan],
[1.2, np.nan, 1.3, np.nan],
[0, 0, np.nan, np.nan],
[1.4, 1.5, 0, np.nan]
])
X_true = np.array([
[-1, 1.1, 0, -1],
[1.2, -1, 1.3, -1],
[0, 0, -1, -1],
[1.4, 1.5, 0, -1]
])
X = array_constructor(X)
X_true = array_constructor(X_true)
imputer = SimpleImputer(strategy="constant", fill_value=-1)
X_trans = imputer.fit_transform(X)
assert_allclose_dense_sparse(X_trans, X_true)