当前位置: 首页>>代码示例>>Python>>正文


Python VotingClassifier.predict方法代码示例

本文整理汇总了Python中sklearn.ensemble.VotingClassifier.predict方法的典型用法代码示例。如果您正苦于以下问题:Python VotingClassifier.predict方法的具体用法?Python VotingClassifier.predict怎么用?Python VotingClassifier.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.VotingClassifier的用法示例。


在下文中一共展示了VotingClassifier.predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_sample_weight

# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import predict [as 别名]
def test_sample_weight():
    """Tests sample_weight parameter of VotingClassifier"""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = SVC(probability=True, random_state=123)
    eclf1 = VotingClassifier(estimators=[
        ('lr', clf1), ('rf', clf2), ('svc', clf3)],
        voting='soft').fit(X, y, sample_weight=np.ones((len(y),)))
    eclf2 = VotingClassifier(estimators=[
        ('lr', clf1), ('rf', clf2), ('svc', clf3)],
        voting='soft').fit(X, y)
    assert_array_equal(eclf1.predict(X), eclf2.predict(X))
    assert_array_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))

    sample_weight = np.random.RandomState(123).uniform(size=(len(y),))
    eclf3 = VotingClassifier(estimators=[('lr', clf1)], voting='soft')
    eclf3.fit(X, y, sample_weight)
    clf1.fit(X, y, sample_weight)
    assert_array_equal(eclf3.predict(X), clf1.predict(X))
    assert_array_equal(eclf3.predict_proba(X), clf1.predict_proba(X))

    clf4 = KNeighborsClassifier()
    eclf3 = VotingClassifier(estimators=[
        ('lr', clf1), ('svc', clf3), ('knn', clf4)],
        voting='soft')
    msg = ('Underlying estimator \'knn\' does not support sample weights.')
    assert_raise_message(ValueError, msg, eclf3.fit, X, y, sample_weight)
开发者ID:ClimbsRocks,项目名称:scikit-learn,代码行数:29,代码来源:test_voting_classifier.py

示例2: test_set_params

# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import predict [as 别名]
def test_set_params():
    """set_params should be able to set estimators"""
    clf1 = LogisticRegression(random_state=123, C=1.0)
    clf2 = RandomForestClassifier(random_state=123, max_depth=None)
    clf3 = GaussianNB()
    eclf1 = VotingClassifier([('lr', clf1), ('rf', clf2)], voting='soft',
                             weights=[1, 2])
    assert_true('lr' in eclf1.named_estimators)
    assert_true(eclf1.named_estimators.lr is eclf1.estimators[0][1])
    assert_true(eclf1.named_estimators.lr is eclf1.named_estimators['lr'])
    eclf1.fit(X, y)
    assert_true('lr' in eclf1.named_estimators_)
    assert_true(eclf1.named_estimators_.lr is eclf1.estimators_[0])
    assert_true(eclf1.named_estimators_.lr is eclf1.named_estimators_['lr'])

    eclf2 = VotingClassifier([('lr', clf1), ('nb', clf3)], voting='soft',
                             weights=[1, 2])
    eclf2.set_params(nb=clf2).fit(X, y)
    assert_false(hasattr(eclf2, 'nb'))

    assert_array_equal(eclf1.predict(X), eclf2.predict(X))
    assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))
    assert_equal(eclf2.estimators[0][1].get_params(), clf1.get_params())
    assert_equal(eclf2.estimators[1][1].get_params(), clf2.get_params())

    eclf1.set_params(lr__C=10.0)
    eclf2.set_params(nb__max_depth=5)

    assert_true(eclf1.estimators[0][1].get_params()['C'] == 10.0)
    assert_true(eclf2.estimators[1][1].get_params()['max_depth'] == 5)
    assert_equal(eclf1.get_params()["lr__C"],
                 eclf1.get_params()["lr"].get_params()['C'])
开发者ID:abecadel,项目名称:scikit-learn,代码行数:34,代码来源:test_voting_classifier.py

示例3: acc_VotingClassifier

# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import predict [as 别名]
def acc_VotingClassifier():
    kf = KFold(900, n_folds=10,shuffle=True)
    acc = 0.0
    temp = 1
    conf_mat = [[0 for i in range(10)] for j in range(10)]
    clf1 = GaussianNB()
    clf2 = RandomForestClassifier(n_estimators=20,max_features=None,class_weight="balanced_subsample")
    clf3 = SVC(kernel='rbf', probability=False)
    clf4 = LogisticRegression()
    eclf = VotingClassifier(estimators=[('gnb', clf1), ('rf', clf2),  ('lr', clf4)], voting='hard', weights=[1,3,3])
    for train_index, test_index in kf:
        X_train, X_test = X[train_index], X[test_index]
        y_train, y_test = y[train_index], y[test_index]
        eclf = eclf.fit(X_train, y_train)
        y_predict = eclf.predict(X_test)
        acc_loop = getAccuracy(y_predict,y_test)
        conf_mat = buildConfusionMatrix(conf_mat,y_predict,y_test)
        print("*** Accuracy*** for "+str(temp)+"th time: "+str(acc_loop))
        acc += acc_loop
        temp +=1
    # Checking if the data set is transformed into MFCC(13) or FFT(1000) or KPCA features(else)
    if (X.shape[1]==13):
        print 'In 13 features if'
        valid_mfcc = eclf.predict(validation_set_mfcc)
    elif (X.shape[1]==1000):
        print 'In 1000 features elif'
        valid_fft = eclf.predict(validation_set_fft)
    elif (X.shape[1]==100):
        print 'In KPCA features else'
        valid_kpca = eclf.predict(validation_set_kpca)
    acc = (acc/10.0)
    printConfusionMatrix(conf_mat)
    return acc, getAccuracyFromConfusion(conf_mat),valid_mfcc, valid_fft, valid_kpca
开发者ID:kcreddy,项目名称:Machine-Learning,代码行数:35,代码来源:Final_Classifier.py

示例4: classify

# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import predict [as 别名]
def classify():
    train_X,Y = load_svmlight_file('data/train_last')
    test_X,test_Y = load_svmlight_file('data/test_last')
    train_X = train_X.toarray()
    test_X = test_X.toarray()
    Y = [int(y) for y in Y]
    # print 'Y:',len(Y)
    rows = pd.read_csv('data/log_test2.csv',index_col=0).sort_index().index.unique()
    train_n = train_X.shape[0]
    m = train_X.shape[1]
    test_n = test_X.shape[0]
    print train_n,m,#test_n
     # 先用训练集训练出所有的分类器
    print 'train classify...'
    clf1 = LinearDiscriminantAnalysis()
    clf2 = GaussianNB()
    clf3 = LogisticRegression()
    clf4 = RandomForestClassifier()
    clf5 = KNeighborsClassifier(n_neighbors=12)
    clf6 = AdaBoostClassifier()
    # x_train,x_test,y_train,y_test = train_test_split(train_X,Y,test_size=0.2) # 对训练集进行划分

    # print x_train.shape
    # print x_test.shape
    # clf.fit(train_X,Y)
    clf = VotingClassifier(estimators=[('la',clf1),('nb',clf2),('lr',clf3),('rf',clf4),('nn',clf5),('ac',clf6)], voting='soft', weights=[1.5,1,1,1,1,1])
    # clf1.fit(x_train,y_train)
    # clf2.fit(x_train,y_train)
    # clf3.fit(x_train,y_train)
    # clf4.fit(x_train,y_train)
    clf.fit(train_X,Y)
    print 'end train classify'

    print 'start classify....'
    # print metrics.classification_report(Y,predict_Y)
    # clf2.fit(train_X,Y)
    # print 'clf2 fited...'
    # clf3.fit(train_X,Y)
    # print 'clf3 fited...'
    # clf4.fit(train_X,Y)
    # print 'clf4 fited...'
    # clf1.fit(train_X,Y)
    # print 'clf1 fited...'
    # 第一个分类结果
    predict_Y = clf.predict(train_X)
    # predict_Y = clf.predict(train_X)
    print 'classify result:'
    print metrics.classification_report(Y,predict_Y)

    predict_Y = clf.predict(test_X)
    # print predict_Y,len(predict_Y)
    print 'end classify...'
    # predict_Y = clf.predict(X[cnt_train:]) # 训练注释这一行,输出测试集打开这一行,注释之后的print metric
    # predict_Y = clf.predict(test_X) # 训练注释这一行,输出测试集打开这一行,注释之后的print metric
    DataFrame(predict_Y,index=rows).to_csv('data/info_test2.csv', header=False)
开发者ID:ganzhiruyi,项目名称:Machine-Learning,代码行数:57,代码来源:test.py

示例5: test_predict_for_hard_voting

# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import predict [as 别名]
def test_predict_for_hard_voting():
    # Test voting classifier with non-integer (float) prediction
    clf1 = FaultySVC(random_state=123)
    clf2 = GaussianNB()
    clf3 = SVC(probability=True, random_state=123)
    eclf1 = VotingClassifier(estimators=[
        ('fsvc', clf1), ('gnb', clf2), ('svc', clf3)], weights=[1, 2, 3],
        voting='hard')

    eclf1.fit(X, y)
    eclf1.predict(X)
开发者ID:ldirer,项目名称:scikit-learn,代码行数:13,代码来源:test_voting_classifier.py

示例6: test_set_estimator_none

# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import predict [as 别名]
def test_set_estimator_none():
    """VotingClassifier set_params should be able to set estimators as None"""
    # Test predict
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = GaussianNB()
    eclf1 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                         ('nb', clf3)],
                             voting='hard', weights=[1, 0, 0.5]).fit(X, y)

    eclf2 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                         ('nb', clf3)],
                             voting='hard', weights=[1, 1, 0.5])
    eclf2.set_params(rf=None).fit(X, y)
    assert_array_equal(eclf1.predict(X), eclf2.predict(X))

    assert_true(dict(eclf2.estimators)["rf"] is None)
    assert_true(len(eclf2.estimators_) == 2)
    assert_true(all([not isinstance(est, RandomForestClassifier) for est in
                     eclf2.estimators_]))
    assert_true(eclf2.get_params()["rf"] is None)

    eclf1.set_params(voting='soft').fit(X, y)
    eclf2.set_params(voting='soft').fit(X, y)
    assert_array_equal(eclf1.predict(X), eclf2.predict(X))
    assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))
    msg = ('All estimators are None. At least one is required'
           ' to be a classifier!')
    assert_raise_message(
        ValueError, msg, eclf2.set_params(lr=None, rf=None, nb=None).fit, X, y)

    # Test soft voting transform
    X1 = np.array([[1], [2]])
    y1 = np.array([1, 2])
    eclf1 = VotingClassifier(estimators=[('rf', clf2), ('nb', clf3)],
                             voting='soft', weights=[0, 0.5],
                             flatten_transform=False).fit(X1, y1)

    eclf2 = VotingClassifier(estimators=[('rf', clf2), ('nb', clf3)],
                             voting='soft', weights=[1, 0.5],
                             flatten_transform=False)
    eclf2.set_params(rf=None).fit(X1, y1)
    assert_array_almost_equal(eclf1.transform(X1),
                              np.array([[[0.7, 0.3], [0.3, 0.7]],
                                        [[1., 0.], [0., 1.]]]))
    assert_array_almost_equal(eclf2.transform(X1),
                              np.array([[[1., 0.],
                                         [0., 1.]]]))
    eclf1.set_params(voting='hard')
    eclf2.set_params(voting='hard')
    assert_array_equal(eclf1.transform(X1), np.array([[0, 0], [1, 1]]))
    assert_array_equal(eclf2.transform(X1), np.array([[0], [1]]))
开发者ID:abecadel,项目名称:scikit-learn,代码行数:54,代码来源:test_voting_classifier.py

示例7: test_parallel_predict

# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import predict [as 别名]
def test_parallel_predict():
    """Check parallel backend of VotingClassifier on toy dataset."""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = GaussianNB()
    X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
    y = np.array([1, 1, 2, 2])

    eclf1 = VotingClassifier(estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft", n_jobs=1).fit(X, y)
    eclf2 = VotingClassifier(estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft", n_jobs=2).fit(X, y)

    assert_array_equal(eclf1.predict(X), eclf2.predict(X))
    assert_array_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))
开发者ID:nelson-liu,项目名称:scikit-learn,代码行数:15,代码来源:test_voting_classifier.py

示例8: voting_class

# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import predict [as 别名]
def voting_class(X,training_target,Y):
    from sklearn.linear_model import LogisticRegression
    from sklearn.naive_bayes import GaussianNB
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.ensemble import VotingClassifier
    
    clf1 = LogisticRegression(random_state=1)
    clf2 = RandomForestClassifier(random_state=1)
    clf3 = GaussianNB()
    eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft')
    eclf.fit(X[:,0:6],training_target)
    proba = eclf.predict_proba(Y[:,0:6])
    
    eclf.predict()
开发者ID:cedricoeldorf,项目名称:Binary_classification,代码行数:16,代码来源:stacking.py

示例9: predict

# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import predict [as 别名]
 def predict(self,X_test):
     '''
     predict the class for each sample
     '''
     if self.use_append == True:
         self.__X_test = X_test
     elif self.use_append == False:
         temp = []
     
     # first stage
     for clf in self.stage_one_clfs:
         y_pred = clf[1].predict(X_test)
         y_pred  = np.reshape(y_pred,(len(y_pred),1))
         if self.use_append == True:
             self.__X_test = np.hstack((self.__X_test,y_pred)) 
         elif self.use_append == False:
             temp.append(y_pred)
     
     if self.use_append == False:
         self.__X_test = np.array(temp).T[0]
     
     # second stage
     majority_voting = VotingClassifier(estimators=self.stage_two_clfs, voting="hard", weights=self.weights)
     y_out = majority_voting.predict(self.__X_test)
     return y_out
开发者ID:tsterbak,项目名称:scikit-stack,代码行数:27,代码来源:stacking_model.py

示例10: voting_fit

# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import predict [as 别名]
def voting_fit(X, y, RESULT_TEST_PATH,RESULT_PATH):
    ada_best = fit_adaboost(X, y)
    extratree_best = fit_extratree(X, y)
    rf_best = fit_rf(X, y)
    gbdt_best = fit_xgboost(X, y)
    svc_best = fit_svc(X, y)
    lr_best = fit_lr(X, y)

    votingC = VotingClassifier(estimators=[('rfc', rf_best), ('extc', extratree_best),('lr',lr_best),
                                            ('adac', ada_best), ('gbc', gbdt_best)], voting='soft',
                               n_jobs=4)
    votingC.fit(X, y)

    test_df = pd.read_csv(RESULT_TEST_PATH)
    test = np.array(test_df)

    #test_Survived = pd.Series(votingC.predict(test), name="Survived")

    result = votingC.predict(test)
    test_df.insert(test_df.columns.size, 'Survived', result)

    test_df = test_df[['PassengerId', 'Survived']]
    test_df['PassengerId'] = test_df['PassengerId'].apply(np.int64)
    test_df.to_csv(RESULT_PATH, index=False)
    print("finish!")
开发者ID:jawiezhu,项目名称:kaggleLearning,代码行数:27,代码来源:fit.py

示例11: main

# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import predict [as 别名]
def main(directory, tools_directory, non_tools_dir):
    global path
    path = sys.path[0]
    start = time.time()
    if directory is None or not os.path.isdir(directory):
        print "Please input directory containing pdf publications to classify"
        sys.exit(1)
    x_train, y_train = fetch_from_file()
    x_test, test_files = get_test_set(directory)
    # Just for testing, update machine learning part later

    x_train, x_test = normalize_scale(x_train, x_test)
    classifier = VotingClassifier(
        [("first", classifier_list[0]), ("second", classifier_list[1]), ("second", classifier_list[2])]
    )
    classifier.fit(x_train, y_train)
    y_pred = classifier.predict(x_test)
    if os.path.isdir(tools_directory):
        shutil.rmtree(tools_directory)
    os.makedirs(tools_directory)

    if os.path.isdir(non_tools_dir):
        shutil.rmtree(non_tools_dir)
    os.makedirs(non_tools_dir)

    for num, pub in zip(y_pred, test_files):
        if num:
            shutil.copy2(directory + pub, tools_directory + pub)
        else:
            shutil.copy2(directory + pub, non_tools_dir + pub)

    print "Classification:    Seconds taken: " + str(time.time() - start)
开发者ID:UCLA-BD2K,项目名称:AztecRetrieval,代码行数:34,代码来源:classifier.py

示例12: test_sample_weight

# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import predict [as 别名]
def test_sample_weight():
    """Tests sample_weight parameter of VotingClassifier"""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = SVC(probability=True, random_state=123)
    eclf1 = VotingClassifier(estimators=[
        ('lr', clf1), ('rf', clf2), ('svc', clf3)],
        voting='soft').fit(X, y, sample_weight=np.ones((len(y),)))
    eclf2 = VotingClassifier(estimators=[
        ('lr', clf1), ('rf', clf2), ('svc', clf3)],
        voting='soft').fit(X, y)
    assert_array_equal(eclf1.predict(X), eclf2.predict(X))
    assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))

    sample_weight = np.random.RandomState(123).uniform(size=(len(y),))
    eclf3 = VotingClassifier(estimators=[('lr', clf1)], voting='soft')
    eclf3.fit(X, y, sample_weight)
    clf1.fit(X, y, sample_weight)
    assert_array_equal(eclf3.predict(X), clf1.predict(X))
    assert_array_almost_equal(eclf3.predict_proba(X), clf1.predict_proba(X))

    # check that an error is raised and indicative if sample_weight is not
    # supported.
    clf4 = KNeighborsClassifier()
    eclf3 = VotingClassifier(estimators=[
        ('lr', clf1), ('svc', clf3), ('knn', clf4)],
        voting='soft')
    msg = ('Underlying estimator KNeighborsClassifier does not support '
           'sample weights.')
    with pytest.raises(ValueError, match=msg):
        eclf3.fit(X, y, sample_weight)

    # check that _parallel_fit_estimator will raise the right error
    # it should raise the original error if this is not linked to sample_weight
    class ClassifierErrorFit(BaseEstimator, ClassifierMixin):
        def fit(self, X, y, sample_weight):
            raise TypeError('Error unrelated to sample_weight.')
    clf = ClassifierErrorFit()
    with pytest.raises(TypeError, match='Error unrelated to sample_weight'):
        clf.fit(X, y, sample_weight=sample_weight)
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:42,代码来源:test_voting.py

示例13: main

# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import predict [as 别名]
def main(path,filename):

	batchsT = ['histogramaByN','histogramaColor','patrones2x2ByN','patrones3x3ByN','patronesCirculaesByN_2_5','patronesCirculaesByN_2_9','patronesCirculaesByN_3_9','patronesCirculaesByN_5_9','patronesCirculaesByN_3_5']
	batchsAux = ['histogramaByN','histogramaColor','patronesCirculaesByN_2_5','patrones2x2ByN','patrones3x3ByN','patronesCirculaesByN_2_9','patronesCirculaesByN_3_9','patronesCirculaesByN_5_9','patronesCirculaesByN_3_5','patronesCirculaesByN_6_12','patronesCirculaesByN_8_12']
	#batchs = ['patrones2x2ByN','patrones3x3ByN','patronesCirculaesByN_2_5','patronesCirculaesByN_2_9']
	#batchs = ['patrones2x2ByN','patrones3x3ByN','patronesCirculaesByN_2_5','patronesCirculaesByN_3_5']
	#for batch in batchsAux:


	#print batch
	batchs = batchsAux
	#batchs.remove(batch)
	X = []
	y = []
	load_batch(y,path,'clases',filename) 
	y = [j for i in y for j in i]
	for batch in batchs:
		load_batch(X,path,batch,filename)
	
	#X,y = load_images('/tmp/train/')
	est = [RandomForest(),Boosting()]
	for i in xrange(0,15):
		est.append(Gradient(i))
	for i in xrange(0,4):
		est.append(SVM(i))

	#scores = cross_validation.cross_val_score(clf, X, y, cv=5)
	#print scores
	clf = VotingClassifier(estimators=est)

	clf.fit(X,y)
	pickle.dump( clf, open( "clf_grande.p", "wb" ) )
	return
	X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, y, test_size=0.2,random_state=777)
	#print clf.sub_score(X_test,Y_test)
	print 'start'
	conf_matrix = metrics.confusion_matrix(Y_test,clf.predict(X_test))
	print 'confution matrix'
	print conf_matrix
	return
	for name,estim in est:
		print name
		#estim.fit(X_train,Y_train)
		#print estim.score(X_test,Y_test)
		print cross_validation.cross_val_score(estim, X, y, cv=5,n_jobs=-1)
	print 'voter'
	print cross_validation.cross_val_score(clf, X, y, cv=5,n_jobs=-1)
	return
	#clf.fit(X_train,Y_train)
	print clf.score(X_test,Y_test)

	return
开发者ID:fcanay,项目名称:MachineLearning,代码行数:54,代码来源:src.py

示例14: classifier

# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import predict [as 别名]
    def classifier(self, scoring, cv, eval_using):
        
        adaclf = AdaBoostClassifier(algorithm='SAMME')
        xtr = StandardScaler().fit_transform(self.xtr)
        xte = StandardScaler().fit_transform(self.xte)
        
        # iterate over each grid score for param tuner
        for score in scoring:
            
            print('Tuning parameters of inital classifiers...')
            passive_params = param_tuner(PassiveAggressiveClassifier(), 
                                         score=score, cv=cv, xtr=xtr, 
                                         ytr=self.ytr)
            passclf = PassiveAggressiveClassifier().set_params(**passive_params)  
            sgd_params = param_tuner(SGDClassifier(), score=score, cv=cv,
                                     xtr=xtr, ytr=self.ytr)
            sgdclf = SGDClassifier().set_params(**sgd_params)
            
            # cant use resampling/bagging with passive aggressive classifier
            # will raise ValueError: The number of class labels must be > 1
            # since resampling may results in training sets with 1 class. 
            
            print('\n'+'Tuning meta-classifiers with tuned classifier/s...') 
            bagsgd_params = param_tuner(BaggingClassifier(sgdclf), 
                                         score=score, cv=cv, xtr=xtr, 
                                         ytr=self.ytr)
            bg_sgdclf = BaggingClassifier(sgdclf).set_params(**bagsgd_params)
            
            adasgd_params = param_tuner(adaclf.set_params(base_estimator=sgdclf), 
                                        score =score, cv=cv, xtr=xtr, 
                                        ytr=self.ytr)
            ada_sgdclf = adaclf.set_params(**adasgd_params)
            
            print('Voting on meta-classifiers/classifiers then predicting...')
            vote = VotingClassifier(estimators=[('BagSGD', bg_sgdclf),
                                                ('adaboostSGD', ada_sgdclf),
                                                ('Passive', passclf)],
                                    voting='hard').fit(xtr, self.ytr)

            start = time.time()
            y_true, y_pred = self.yte, vote.predict(xte)
            print('\n' + '-'*5, 'FINAL PREDICTION RESULTS','-'*5 +'\n', 
                  '{0:.4f}'.format(time.time()-start)+'--prediction time(secs)')
                  
            clf_evaluation = report(*eval_using, y_true=y_true, y_pred=y_pred)
            for reports in clf_evaluation:
                print('---',reports)
                print(clf_evaluation[reports])
开发者ID:Natay,项目名称:machine-learning,代码行数:50,代码来源:bioLearn.py

示例15: do_ml

# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import predict [as 别名]
def do_ml(ticker):
    X, y, df = extract_featuresets(ticker)
    X_train, X_test, y_train, y_test = cross_validation.train_test_split(X,y,test_size=0.25)


    #clf = neighbors.KNeighborsClassifier()
    clf = VotingClassifier([('lsvc', svm.LinearSVC()),
                            ('knn', neighbors.KNeighborsClassifier()),
                            ('rfor', RandomForestClassifier())] )

    clf.fit(X_train, y_train)
    confidence = clf.score(X_test, y_test)
    print('Accuracy', confidence)
    predictions = clf.predict(X_test)
    print('Predicted spread:', Counter(predictions))

    return confidence
开发者ID:wpr101,项目名称:SentiSmart,代码行数:19,代码来源:PreProcessData.py


注:本文中的sklearn.ensemble.VotingClassifier.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。