本文整理汇总了Python中sklearn.ensemble.VotingClassifier.get_params方法的典型用法代码示例。如果您正苦于以下问题:Python VotingClassifier.get_params方法的具体用法?Python VotingClassifier.get_params怎么用?Python VotingClassifier.get_params使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.ensemble.VotingClassifier
的用法示例。
在下文中一共展示了VotingClassifier.get_params方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_set_params
# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import get_params [as 别名]
def test_set_params():
"""set_params should be able to set estimators"""
clf1 = LogisticRegression(random_state=123, C=1.0)
clf2 = RandomForestClassifier(random_state=123, max_depth=None)
clf3 = GaussianNB()
eclf1 = VotingClassifier([('lr', clf1), ('rf', clf2)], voting='soft',
weights=[1, 2])
assert_true('lr' in eclf1.named_estimators)
assert_true(eclf1.named_estimators.lr is eclf1.estimators[0][1])
assert_true(eclf1.named_estimators.lr is eclf1.named_estimators['lr'])
eclf1.fit(X, y)
assert_true('lr' in eclf1.named_estimators_)
assert_true(eclf1.named_estimators_.lr is eclf1.estimators_[0])
assert_true(eclf1.named_estimators_.lr is eclf1.named_estimators_['lr'])
eclf2 = VotingClassifier([('lr', clf1), ('nb', clf3)], voting='soft',
weights=[1, 2])
eclf2.set_params(nb=clf2).fit(X, y)
assert_false(hasattr(eclf2, 'nb'))
assert_array_equal(eclf1.predict(X), eclf2.predict(X))
assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))
assert_equal(eclf2.estimators[0][1].get_params(), clf1.get_params())
assert_equal(eclf2.estimators[1][1].get_params(), clf2.get_params())
eclf1.set_params(lr__C=10.0)
eclf2.set_params(nb__max_depth=5)
assert_true(eclf1.estimators[0][1].get_params()['C'] == 10.0)
assert_true(eclf2.estimators[1][1].get_params()['max_depth'] == 5)
assert_equal(eclf1.get_params()["lr__C"],
eclf1.get_params()["lr"].get_params()['C'])
示例2: test_set_estimator_none
# 需要导入模块: from sklearn.ensemble import VotingClassifier [as 别名]
# 或者: from sklearn.ensemble.VotingClassifier import get_params [as 别名]
def test_set_estimator_none():
"""VotingClassifier set_params should be able to set estimators as None"""
# Test predict
clf1 = LogisticRegression(random_state=123)
clf2 = RandomForestClassifier(random_state=123)
clf3 = GaussianNB()
eclf1 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
('nb', clf3)],
voting='hard', weights=[1, 0, 0.5]).fit(X, y)
eclf2 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
('nb', clf3)],
voting='hard', weights=[1, 1, 0.5])
eclf2.set_params(rf=None).fit(X, y)
assert_array_equal(eclf1.predict(X), eclf2.predict(X))
assert_true(dict(eclf2.estimators)["rf"] is None)
assert_true(len(eclf2.estimators_) == 2)
assert_true(all([not isinstance(est, RandomForestClassifier) for est in
eclf2.estimators_]))
assert_true(eclf2.get_params()["rf"] is None)
eclf1.set_params(voting='soft').fit(X, y)
eclf2.set_params(voting='soft').fit(X, y)
assert_array_equal(eclf1.predict(X), eclf2.predict(X))
assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))
msg = ('All estimators are None. At least one is required'
' to be a classifier!')
assert_raise_message(
ValueError, msg, eclf2.set_params(lr=None, rf=None, nb=None).fit, X, y)
# Test soft voting transform
X1 = np.array([[1], [2]])
y1 = np.array([1, 2])
eclf1 = VotingClassifier(estimators=[('rf', clf2), ('nb', clf3)],
voting='soft', weights=[0, 0.5],
flatten_transform=False).fit(X1, y1)
eclf2 = VotingClassifier(estimators=[('rf', clf2), ('nb', clf3)],
voting='soft', weights=[1, 0.5],
flatten_transform=False)
eclf2.set_params(rf=None).fit(X1, y1)
assert_array_almost_equal(eclf1.transform(X1),
np.array([[[0.7, 0.3], [0.3, 0.7]],
[[1., 0.], [0., 1.]]]))
assert_array_almost_equal(eclf2.transform(X1),
np.array([[[1., 0.],
[0., 1.]]]))
eclf1.set_params(voting='hard')
eclf2.set_params(voting='hard')
assert_array_equal(eclf1.transform(X1), np.array([[0, 0], [1, 1]]))
assert_array_equal(eclf2.transform(X1), np.array([[0], [1]]))