当前位置: 首页>>代码示例>>Python>>正文


Python IsolationForest.fit方法代码示例

本文整理汇总了Python中sklearn.ensemble.IsolationForest.fit方法的典型用法代码示例。如果您正苦于以下问题:Python IsolationForest.fit方法的具体用法?Python IsolationForest.fit怎么用?Python IsolationForest.fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.IsolationForest的用法示例。


在下文中一共展示了IsolationForest.fit方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: outlier_rejection

# 需要导入模块: from sklearn.ensemble import IsolationForest [as 别名]
# 或者: from sklearn.ensemble.IsolationForest import fit [as 别名]
def outlier_rejection(X, y):
    model = IsolationForest(max_samples=100,
                            contamination=0.4,
                            random_state=rng)
    model.fit(X)
    y_pred = model.predict(X)
    return X[y_pred == 1], y[y_pred == 1]
开发者ID:zzhhoubin,项目名称:imbalanced-learn,代码行数:9,代码来源:plot_outlier_rejections.py

示例2: test_iforest_subsampled_features

# 需要导入模块: from sklearn.ensemble import IsolationForest [as 别名]
# 或者: from sklearn.ensemble.IsolationForest import fit [as 别名]
def test_iforest_subsampled_features():
    # It tests non-regression for #5732 which failed at predict.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(boston.data[:50], boston.target[:50], random_state=rng)
    clf = IsolationForest(max_features=0.8)
    clf.fit(X_train, y_train)
    clf.predict(X_test)
开发者ID:perimosocordiae,项目名称:scikit-learn,代码行数:9,代码来源:test_iforest.py

示例3: _predict_self

# 需要导入模块: from sklearn.ensemble import IsolationForest [as 别名]
# 或者: from sklearn.ensemble.IsolationForest import fit [as 别名]
    def _predict_self(self):

        clf = IsolationForest(contamination=self.frac)

        clf.fit(self.num_X)

        return clf.predict(self.num_X)
开发者ID:xiangnanyue,项目名称:Pyod,代码行数:9,代码来源:pyador.py

示例4: outlier_rejection

# 需要导入模块: from sklearn.ensemble import IsolationForest [as 别名]
# 或者: from sklearn.ensemble.IsolationForest import fit [as 别名]
def outlier_rejection(X, y):
    """This will be our function used to resample our dataset."""
    model = IsolationForest(max_samples=100,
                            contamination=0.4,
                            random_state=rng)
    model.fit(X)
    y_pred = model.predict(X)
    return X[y_pred == 1], y[y_pred == 1]
开发者ID:bodycat,项目名称:imbalanced-learn,代码行数:10,代码来源:plot_outlier_rejections.py

示例5: IsolationForest_calulate

# 需要导入模块: from sklearn.ensemble import IsolationForest [as 别名]
# 或者: from sklearn.ensemble.IsolationForest import fit [as 别名]
def IsolationForest_calulate(train_data_one,test_data):
    # 使用异常检测方法
    clf = IsolationForest()
    # 训练异常检测模型
    clf.fit(train_data_one)
    # 模型预测
    Pre_result = clf.predict(test_data)
    # 计算多少个概率
    prob = len([x for x in Pre_result if x == 1])/len(Pre_result)
    return prob
开发者ID:Ayo616,项目名称:KDD-workshop-second,代码行数:12,代码来源:ITPA.py

示例6: test_iforest_works

# 需要导入模块: from sklearn.ensemble import IsolationForest [as 别名]
# 或者: from sklearn.ensemble.IsolationForest import fit [as 别名]
def test_iforest_works():
    # toy sample (the last two samples are outliers)
    X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [6, 3], [-4, 7]]

    # Test LOF
    clf = IsolationForest(random_state=rng)
    clf.fit(X)
    pred = clf.predict(X)

    # assert detect outliers:
    assert_greater(np.min(pred[-2:]), np.max(pred[:-2]))
开发者ID:ElDeveloper,项目名称:scikit-learn,代码行数:13,代码来源:test_iforest.py

示例7: test_iforest_works

# 需要导入模块: from sklearn.ensemble import IsolationForest [as 别名]
# 或者: from sklearn.ensemble.IsolationForest import fit [as 别名]
def test_iforest_works(contamination):
    # toy sample (the last two samples are outliers)
    X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [6, 3], [-4, 7]]

    # Test IsolationForest
    clf = IsolationForest(random_state=rng, contamination=contamination)
    clf.fit(X)
    decision_func = -clf.decision_function(X)
    pred = clf.predict(X)
    # assert detect outliers:
    assert_greater(np.min(decision_func[-2:]), np.max(decision_func[:-2]))
    assert_array_equal(pred, 6 * [1] + 2 * [-1])
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:14,代码来源:test_iforest.py

示例8: isolationForest

# 需要导入模块: from sklearn.ensemble import IsolationForest [as 别名]
# 或者: from sklearn.ensemble.IsolationForest import fit [as 别名]
    def isolationForest(self, settings, mname, data):
        '''
        :param settings: -> settings dictionary
        :param mname: -> name of serialized cluster
        :return: -> isolation forest instance
        :example settings: -> {n_estimators:100, max_samples:100, contamination:0.1, bootstrap:False,
                        max_features:1.0, n_jobs:1, random_state:None, verbose:0}
        '''
        # rng = np.random.RandomState(42)
        if settings['random_state'] == 'None':
            settings['random_state'] = None

        if isinstance(settings['bootstrap'], str):
            settings['bootstrap'] = str2Bool(settings['bootstrap'])

        if isinstance(settings['verbose'], str):
            settings['verbose'] = str2Bool(settings['verbose'])

        if settings['max_samples'] != 'auto':
            settings['max_samples'] = int(settings['max_samples'])
        # print type(settings['max_samples'])
        for k, v in settings.iteritems():
            logger.info('[%s] : [INFO] IsolationForest %s set to %s',
                         datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), k, v)
            print "IsolationForest %s set to %s" % (k, v)
        try:
            clf = IsolationForest(n_estimators=int(settings['n_estimators']), max_samples=settings['max_samples'], contamination=float(settings['contamination']), bootstrap=settings['bootstrap'],
                        max_features=float(settings['max_features']), n_jobs=int(settings['n_jobs']), random_state=settings['random_state'], verbose=settings['verbose'])
        except Exception as inst:
            logger.error('[%s] : [ERROR] Cannot instanciate isolation forest with %s and %s',
                         datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), type(inst), inst.args)
            print "Error while  instanciating isolation forest with %s and %s" % (type(inst), inst.args)
            sys.exit(1)
        # clf = IsolationForest(max_samples=100, random_state=rng)
        # print "*&*&*&& %s" % type(data)
        try:
            clf.fit(data)
        except Exception as inst:
            logger.error('[%s] : [ERROR] Cannot fit isolation forest model with %s and %s',
                         datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), type(inst), inst.args)
            sys.exit(1)
        predict = clf.predict(data)
        print "Anomaly Array:"
        print predict
        self.__serializemodel(clf, 'isoforest', mname)
        return clf
开发者ID:igabriel85,项目名称:dmon-adp,代码行数:48,代码来源:dmonscilearncluster.py

示例9: outlier_removal

# 需要导入模块: from sklearn.ensemble import IsolationForest [as 别名]
# 或者: from sklearn.ensemble.IsolationForest import fit [as 别名]
def outlier_removal(df, col, method, params):
    if method == 'Isolation Forest':
        do_outlier_removal = IsolationForest(**params)
    if method == 'Local Outlier Factor':
        do_outlier_removal = LocalOutlierFactor(**params)
    else:
        method == None
    do_outlier_removal.fit(np.array(df[col]))
    if method == 'Isolation Forest':
        outlier_scores = do_outlier_removal.decision_function(np.array(df[col]))
        df[('meta', 'Outlier Scores - ' + method + str(params))] = outlier_scores
        is_outlier = do_outlier_removal.predict(np.array(df[col]))
        df[('meta', 'Outliers - ' + method + str(params))] = is_outlier
    if method == 'Local Outlier Factor':
        is_outlier = do_outlier_removal.fit_predict(np.array(df[col]))
        df[('meta', 'Outliers - ' + method + str(params))] = is_outlier
        df[('meta', 'Outlier Factor - ' + method + str(params))] = do_outlier_removal.negative_outlier_factor_
    return df, do_outlier_removal
开发者ID:USGS-Astrogeology,项目名称:PySAT,代码行数:20,代码来源:outlier_removal.py

示例10: test_iforest_warm_start

# 需要导入模块: from sklearn.ensemble import IsolationForest [as 别名]
# 或者: from sklearn.ensemble.IsolationForest import fit [as 别名]
def test_iforest_warm_start():
    """Test iterative addition of iTrees to an iForest """

    rng = check_random_state(0)
    X = rng.randn(20, 2)

    # fit first 10 trees
    clf = IsolationForest(n_estimators=10, max_samples=20,
                          random_state=rng, warm_start=True)
    clf.fit(X)
    # remember the 1st tree
    tree_1 = clf.estimators_[0]
    # fit another 10 trees
    clf.set_params(n_estimators=20)
    clf.fit(X)
    # expecting 20 fitted trees and no overwritten trees
    assert len(clf.estimators_) == 20
    assert clf.estimators_[0] is tree_1
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:20,代码来源:test_iforest.py

示例11: predict

# 需要导入模块: from sklearn.ensemble import IsolationForest [as 别名]
# 或者: from sklearn.ensemble.IsolationForest import fit [as 别名]
    def predict(self, X, window=DEFAULT_WINDOW):
        """
        Predict if a particular sample is an outlier or not.

        :param X: the time series to detect of
        :param type X: pandas.Series
        :param window: the length of window
        :param type window: int
        :return: 1 denotes normal, 0 denotes abnormal.
        """
        x_train = list(range(0, 2 * window + 1)) + list(range(0, 2 * window + 1)) + list(range(0, window + 1))
        sample_features = zip(x_train, X)
        clf = IsolationForest(self.n_estimators, self.max_samples, self.contamination, self.max_feature, self.bootstrap, self.n_jobs, self.random_state, self.verbose)
        clf.fit(sample_features)
        predict_res = clf.predict(sample_features)
        if predict_res[-1] == -1:
            return 0
        return 1
开发者ID:lixuefeng123,项目名称:Metis,代码行数:20,代码来源:isolation_forest.py

示例12: len

# 需要导入模块: from sklearn.ensemble import IsolationForest [as 别名]
# 或者: from sklearn.ensemble.IsolationForest import fit [as 别名]
    featureMatrix['is_train'] = np.random.uniform(0, 1, len(featureMatrix)) <= .75

    #split out the train and test df's into separate objects
    train, test = featureMatrix[featureMatrix['is_train']==True], featureMatrix[featureMatrix['is_train']==False]

    #drop the is_train column, we don't need it anymore
    train = train.drop('is_train', axis=1)
    test = test.drop('is_train', axis=1)

    #create the isolation forest class and factorize the class column
    clf = IsolationForest(n_estimators=opts.numtrees)


    #train the isolation forest on the training set, dropping the class column (since the trainer takes that as a separate argument)
    print('\nTraining')
    clf.fit(train.drop('class', axis=1))

    #remove the 'answers' from the test set
    testnoclass = test.drop('class', axis=1)

    print('\nPredicting (class 1 is normal, class -1 is malicious)')

    #evaluate our results on the test set.
    test.is_copy = False
    test['prediction'] = clf.predict(testnoclass)
    print

    #group by class (the real answers) and prediction (what the forest said). we want these values to match for 'good' answers
    results=test.groupby(['class', 'prediction'])
    resultsagg = results.size()
    print(resultsagg)
开发者ID:DavidJBianco,项目名称:Clearcut,代码行数:33,代码来源:train_flows_iforest.py

示例13: ohEncoding

# 需要导入模块: from sklearn.ensemble import IsolationForest [as 别名]
# 或者: from sklearn.ensemble.IsolationForest import fit [as 别名]
        data = data.drop(cols, axis=1)
        data = data.join(vecData)
    return data, vecData, vec

df, t, v = ohEncoding(df, col, replace=True)

print "Shape after encoding"
print type(df.shape)

df_unlabeled = df.drop("Anomaly", axis=1)
print "Shape of the dataframe without anomaly column: "
print df_unlabeled.shape

clf = IsolationForest(max_samples=6444, verbose=1, n_jobs=-1, contamination=0.255555
                      , bootstrap=True, max_features=9)
clf.fit(df_unlabeled)
pred = clf.predict(df_unlabeled)
# print type(pred)
# print data.shape
# print len(pred)
# print pred
anomalies = np.argwhere(pred == -1)
normal = np.argwhere(pred == 1)
# print anomalies
# print type(anomalies)

df['ISO1'] = pred

# iterate over rows
nLabAno = 0
nDetAno = 0
开发者ID:igabriel85,项目名称:dmon-adp,代码行数:33,代码来源:CEP_Exp_Two.py

示例14: print

# 需要导入模块: from sklearn.ensemble import IsolationForest [as 别名]
# 或者: from sklearn.ensemble.IsolationForest import fit [as 别名]
            # X = X[indices]
            # y = y[indices]

            X_train = X[:n_samples_train, :]
            X_test = X[n_samples_train:, :]
            y_train = y[:n_samples_train]
            y_test = y[n_samples_train:]

            # # training only on normal data:
            # X_train = X_train[y_train == 0]
            # y_train = y_train[y_train == 0]

            print('IsolationForest processing...')
            model = IsolationForest()
            tstart = time()
            model.fit(X_train)
            fit_time += time() - tstart
            tstart = time()

            scoring = -model.decision_function(X_test)  # the lower,the more normal
            predict_time += time() - tstart
            fpr_, tpr_, thresholds_ = roc_curve(y_test, scoring)

            if predict_time + fit_time > max_time:
                raise TimeoutError

            f = interp1d(fpr_, tpr_)
            tpr += f(x_axis)
            tpr[0] = 0.

            precision_, recall_ = precision_recall_curve(y_test, scoring)[:2]
开发者ID:ngoix,项目名称:OCRF,代码行数:33,代码来源:bench_isolation_forest.py

示例15: IsolationForest

# 需要导入模块: from sklearn.ensemble import IsolationForest [as 别名]
# 或者: from sklearn.ensemble.IsolationForest import fit [as 别名]
    iforest = IsolationForest()
    lof = LocalOutlierFactor(n_neighbors=20)
    ocsvm = OneClassSVM()

    lim_inf = X.min(axis=0)
    lim_sup = X.max(axis=0)
    volume_support = (lim_sup - lim_inf).prod()
    t = np.arange(0, 100 / volume_support, 0.01 / volume_support)
    axis_alpha = np.arange(alpha_min, alpha_max, 0.0001)
    unif = np.random.uniform(lim_inf, lim_sup,
                             size=(n_generated, n_features))

    # fit:
    print('IsolationForest processing...')
    iforest = IsolationForest()
    iforest.fit(X_train)
    s_X_iforest = iforest.decision_function(X_test)
    print('LocalOutlierFactor processing...')
    lof = LocalOutlierFactor(n_neighbors=20)
    lof.fit(X_train)
    s_X_lof = lof.decision_function(X_test)
    print('OneClassSVM processing...')
    ocsvm = OneClassSVM()
    ocsvm.fit(X_train[:min(ocsvm_max_train, n_samples_train - 1)])
    s_X_ocsvm = ocsvm.decision_function(X_test).reshape(1, -1)[0]
    s_unif_iforest = iforest.decision_function(unif)
    s_unif_lof = lof.decision_function(unif)
    s_unif_ocsvm = ocsvm.decision_function(unif).reshape(1, -1)[0]
    plt.subplot(121)
    auc_iforest, em_iforest, amax_iforest = em(t, t_max,
                                               volume_support,
开发者ID:ngoix,项目名称:EMMV_benchmarks,代码行数:33,代码来源:em_bench.py


注:本文中的sklearn.ensemble.IsolationForest.fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。