当前位置: 首页>>代码示例>>Python>>正文


Python ensemble.IsolationForest类代码示例

本文整理汇总了Python中sklearn.ensemble.IsolationForest的典型用法代码示例。如果您正苦于以下问题:Python IsolationForest类的具体用法?Python IsolationForest怎么用?Python IsolationForest使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了IsolationForest类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _predict_self

    def _predict_self(self):

        clf = IsolationForest(contamination=self.frac)

        clf.fit(self.num_X)

        return clf.predict(self.num_X)
开发者ID:xiangnanyue,项目名称:Pyod,代码行数:7,代码来源:pyador.py

示例2: test_iforest_sparse

def test_iforest_sparse():
    """Check IForest for various parameter settings on sparse input."""
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(boston.data[:50],
                                                        boston.target[:50],
                                                        random_state=rng)
    grid = ParameterGrid({"max_samples": [0.5, 1.0],
                          "bootstrap": [True, False]})

    for sparse_format in [csc_matrix, csr_matrix]:
        X_train_sparse = sparse_format(X_train)
        X_test_sparse = sparse_format(X_test)

        for params in grid:
            # Trained on sparse format
            sparse_classifier = IsolationForest(
                n_estimators=10, random_state=1, **params).fit(X_train_sparse)
            sparse_results = sparse_classifier.predict(X_test_sparse)

            # Trained on dense format
            dense_classifier = IsolationForest(
                n_estimators=10, random_state=1, **params).fit(X_train)
            dense_results = dense_classifier.predict(X_test)

            assert_array_equal(sparse_results, dense_results)
            assert_array_equal(sparse_results, dense_results)
开发者ID:AndyMelendezCuesta,项目名称:scikit-learn,代码行数:26,代码来源:test_iforest.py

示例3: outlier_rejection

def outlier_rejection(X, y):
    model = IsolationForest(max_samples=100,
                            contamination=0.4,
                            random_state=rng)
    model.fit(X)
    y_pred = model.predict(X)
    return X[y_pred == 1], y[y_pred == 1]
开发者ID:zzhhoubin,项目名称:imbalanced-learn,代码行数:7,代码来源:plot_outlier_rejections.py

示例4: test_iforest_subsampled_features

def test_iforest_subsampled_features():
    # It tests non-regression for #5732 which failed at predict.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(boston.data[:50], boston.target[:50], random_state=rng)
    clf = IsolationForest(max_features=0.8)
    clf.fit(X_train, y_train)
    clf.predict(X_test)
开发者ID:perimosocordiae,项目名称:scikit-learn,代码行数:7,代码来源:test_iforest.py

示例5: outlier_rejection

def outlier_rejection(X, y):
    """This will be our function used to resample our dataset."""
    model = IsolationForest(max_samples=100,
                            contamination=0.4,
                            random_state=rng)
    model.fit(X)
    y_pred = model.predict(X)
    return X[y_pred == 1], y[y_pred == 1]
开发者ID:bodycat,项目名称:imbalanced-learn,代码行数:8,代码来源:plot_outlier_rejections.py

示例6: IsolationForest_calulate

def IsolationForest_calulate(train_data_one,test_data):
    # 使用异常检测方法
    clf = IsolationForest()
    # 训练异常检测模型
    clf.fit(train_data_one)
    # 模型预测
    Pre_result = clf.predict(test_data)
    # 计算多少个概率
    prob = len([x for x in Pre_result if x == 1])/len(Pre_result)
    return prob
开发者ID:Ayo616,项目名称:KDD-workshop-second,代码行数:10,代码来源:ITPA.py

示例7: test_iforest_works

def test_iforest_works():
    # toy sample (the last two samples are outliers)
    X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [6, 3], [-4, 7]]

    # Test LOF
    clf = IsolationForest(random_state=rng)
    clf.fit(X)
    pred = clf.predict(X)

    # assert detect outliers:
    assert_greater(np.min(pred[-2:]), np.max(pred[:-2]))
开发者ID:ElDeveloper,项目名称:scikit-learn,代码行数:11,代码来源:test_iforest.py

示例8: test_iforest_works

def test_iforest_works(contamination):
    # toy sample (the last two samples are outliers)
    X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [6, 3], [-4, 7]]

    # Test IsolationForest
    clf = IsolationForest(random_state=rng, contamination=contamination)
    clf.fit(X)
    decision_func = -clf.decision_function(X)
    pred = clf.predict(X)
    # assert detect outliers:
    assert_greater(np.min(decision_func[-2:]), np.max(decision_func[:-2]))
    assert_array_equal(pred, 6 * [1] + 2 * [-1])
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:12,代码来源:test_iforest.py

示例9: fit

    def fit(self, X, y=None):
        """Fit detector. y is optional for unsupervised methods.

        Parameters
        ----------
        X : numpy array of shape (n_samples, n_features)
            The input samples.

        y : numpy array of shape (n_samples,), optional (default=None)
            The ground truth of the input samples (labels).
        """
        # validate inputs X and y (optional)
        X = check_array(X)
        self._set_n_classes(y)

        self.detector_ = IsolationForest(n_estimators=self.n_estimators,
                                         max_samples=self.max_samples,
                                         contamination=self.contamination,
                                         max_features=self.max_features,
                                         bootstrap=self.bootstrap,
                                         n_jobs=self.n_jobs,
                                         random_state=self.random_state,
                                         verbose=self.verbose)
        self.detector_.fit(X=X,
                           y=None,
                           sample_weight=None)

        # invert decision_scores_. Outliers comes with higher outlier scores.
        self.decision_scores_ = invert_order(
            self.detector_.decision_function(X))
        self._process_decision_scores()
        return self
开发者ID:flaviassantos,项目名称:pyod,代码行数:32,代码来源:iforest.py

示例10: isolationForest

    def isolationForest(self, settings, mname, data):
        '''
        :param settings: -> settings dictionary
        :param mname: -> name of serialized cluster
        :return: -> isolation forest instance
        :example settings: -> {n_estimators:100, max_samples:100, contamination:0.1, bootstrap:False,
                        max_features:1.0, n_jobs:1, random_state:None, verbose:0}
        '''
        # rng = np.random.RandomState(42)
        if settings['random_state'] == 'None':
            settings['random_state'] = None

        if isinstance(settings['bootstrap'], str):
            settings['bootstrap'] = str2Bool(settings['bootstrap'])

        if isinstance(settings['verbose'], str):
            settings['verbose'] = str2Bool(settings['verbose'])

        if settings['max_samples'] != 'auto':
            settings['max_samples'] = int(settings['max_samples'])
        # print type(settings['max_samples'])
        for k, v in settings.iteritems():
            logger.info('[%s] : [INFO] IsolationForest %s set to %s',
                         datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), k, v)
            print "IsolationForest %s set to %s" % (k, v)
        try:
            clf = IsolationForest(n_estimators=int(settings['n_estimators']), max_samples=settings['max_samples'], contamination=float(settings['contamination']), bootstrap=settings['bootstrap'],
                        max_features=float(settings['max_features']), n_jobs=int(settings['n_jobs']), random_state=settings['random_state'], verbose=settings['verbose'])
        except Exception as inst:
            logger.error('[%s] : [ERROR] Cannot instanciate isolation forest with %s and %s',
                         datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), type(inst), inst.args)
            print "Error while  instanciating isolation forest with %s and %s" % (type(inst), inst.args)
            sys.exit(1)
        # clf = IsolationForest(max_samples=100, random_state=rng)
        # print "*&*&*&& %s" % type(data)
        try:
            clf.fit(data)
        except Exception as inst:
            logger.error('[%s] : [ERROR] Cannot fit isolation forest model with %s and %s',
                         datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S'), type(inst), inst.args)
            sys.exit(1)
        predict = clf.predict(data)
        print "Anomaly Array:"
        print predict
        self.__serializemodel(clf, 'isoforest', mname)
        return clf
开发者ID:igabriel85,项目名称:dmon-adp,代码行数:46,代码来源:dmonscilearncluster.py

示例11: test_score_samples

def test_score_samples():
    X_train = [[1, 1], [1, 2], [2, 1]]
    clf1 = IsolationForest(contamination=0.1).fit(X_train)
    clf2 = IsolationForest().fit(X_train)
    assert_array_equal(clf1.score_samples([[2., 2.]]),
                       clf1.decision_function([[2., 2.]]) + clf1.offset_)
    assert_array_equal(clf2.score_samples([[2., 2.]]),
                       clf2.decision_function([[2., 2.]]) + clf2.offset_)
    assert_array_equal(clf1.score_samples([[2., 2.]]),
                       clf2.score_samples([[2., 2.]]))
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:10,代码来源:test_iforest.py

示例12: predict

    def predict(self, X, window=DEFAULT_WINDOW):
        """
        Predict if a particular sample is an outlier or not.

        :param X: the time series to detect of
        :param type X: pandas.Series
        :param window: the length of window
        :param type window: int
        :return: 1 denotes normal, 0 denotes abnormal.
        """
        x_train = list(range(0, 2 * window + 1)) + list(range(0, 2 * window + 1)) + list(range(0, window + 1))
        sample_features = zip(x_train, X)
        clf = IsolationForest(self.n_estimators, self.max_samples, self.contamination, self.max_feature, self.bootstrap, self.n_jobs, self.random_state, self.verbose)
        clf.fit(sample_features)
        predict_res = clf.predict(sample_features)
        if predict_res[-1] == -1:
            return 0
        return 1
开发者ID:lixuefeng123,项目名称:Metis,代码行数:18,代码来源:isolation_forest.py

示例13: test_iforest_parallel_regression

def test_iforest_parallel_regression():
    """Check parallel regression."""
    rng = check_random_state(0)

    X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng)

    ensemble = IsolationForest(n_jobs=3, random_state=0).fit(X_train)

    ensemble.set_params(n_jobs=1)
    y1 = ensemble.predict(X_test)
    ensemble.set_params(n_jobs=2)
    y2 = ensemble.predict(X_test)
    assert_array_almost_equal(y1, y2)

    ensemble = IsolationForest(n_jobs=1, random_state=0).fit(X_train)

    y3 = ensemble.predict(X_test)
    assert_array_almost_equal(y1, y3)
开发者ID:AyushKesar,项目名称:scikit-learn,代码行数:18,代码来源:test_iforest.py

示例14: test_iforest_performance

def test_iforest_performance():
    """Test Isolation Forest performs well"""

    # Generate train/test data
    rng = check_random_state(2)
    X = 0.3 * rng.randn(120, 2)
    X_train = np.r_[X + 2, X - 2]
    X_train = X[:100]

    # Generate some abnormal novel observations
    X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))
    X_test = np.r_[X[100:], X_outliers]
    y_test = np.array([0] * 20 + [1] * 20)

    # fit the model
    clf = IsolationForest(max_samples=100, random_state=rng).fit(X_train)

    # predict scores (the lower, the more normal)
    y_pred = - clf.decision_function(X_test)

    # check that there is at most 6 errors (false positive or false negative)
    assert_greater(roc_auc_score(y_test, y_pred), 0.98)
开发者ID:AndyMelendezCuesta,项目名称:scikit-learn,代码行数:22,代码来源:test_iforest.py

示例15: test_iforest_warm_start

def test_iforest_warm_start():
    """Test iterative addition of iTrees to an iForest """

    rng = check_random_state(0)
    X = rng.randn(20, 2)

    # fit first 10 trees
    clf = IsolationForest(n_estimators=10, max_samples=20,
                          random_state=rng, warm_start=True)
    clf.fit(X)
    # remember the 1st tree
    tree_1 = clf.estimators_[0]
    # fit another 10 trees
    clf.set_params(n_estimators=20)
    clf.fit(X)
    # expecting 20 fitted trees and no overwritten trees
    assert len(clf.estimators_) == 20
    assert clf.estimators_[0] is tree_1
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:18,代码来源:test_iforest.py


注:本文中的sklearn.ensemble.IsolationForest类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。