当前位置: 首页>>代码示例>>Python>>正文


Python GradientBoostingClassifier.staged_predict_proba方法代码示例

本文整理汇总了Python中sklearn.ensemble.GradientBoostingClassifier.staged_predict_proba方法的典型用法代码示例。如果您正苦于以下问题:Python GradientBoostingClassifier.staged_predict_proba方法的具体用法?Python GradientBoostingClassifier.staged_predict_proba怎么用?Python GradientBoostingClassifier.staged_predict_proba使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.GradientBoostingClassifier的用法示例。


在下文中一共展示了GradientBoostingClassifier.staged_predict_proba方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_staged_predict_proba

# 需要导入模块: from sklearn.ensemble import GradientBoostingClassifier [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingClassifier import staged_predict_proba [as 别名]
def test_staged_predict_proba():
    # Test whether staged predict proba eventually gives
    # the same prediction.
    X, y = datasets.make_hastie_10_2(n_samples=1200,
                                     random_state=1)
    X_train, y_train = X[:200], y[:200]
    X_test, y_test = X[200:], y[200:]
    clf = GradientBoostingClassifier(n_estimators=20)
    # test raise NotFittedError if not fitted
    assert_raises(NotFittedError, lambda X: np.fromiter(
        clf.staged_predict_proba(X), dtype=np.float64), X_test)

    clf.fit(X_train, y_train)

    # test if prediction for last stage equals ``predict``
    for y_pred in clf.staged_predict(X_test):
        assert_equal(y_test.shape, y_pred.shape)

    assert_array_equal(clf.predict(X_test), y_pred)

    # test if prediction for last stage equals ``predict_proba``
    for staged_proba in clf.staged_predict_proba(X_test):
        assert_equal(y_test.shape[0], staged_proba.shape[0])
        assert_equal(2, staged_proba.shape[1])

    assert_array_almost_equal(clf.predict_proba(X_test), staged_proba)
开发者ID:amueller,项目名称:scikit-learn,代码行数:28,代码来源:test_gradient_boosting.py

示例2: test_gbm_classifier_backupsklearn

# 需要导入模块: from sklearn.ensemble import GradientBoostingClassifier [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingClassifier import staged_predict_proba [as 别名]
def test_gbm_classifier_backupsklearn(backend='auto'):
    df = pd.read_csv("./open_data/creditcard.csv")
    X = np.array(df.iloc[:, :df.shape[1] - 1], dtype='float32', order='C')
    y = np.array(df.iloc[:, df.shape[1] - 1], dtype='float32', order='C')
    import h2o4gpu
    Solver = h2o4gpu.GradientBoostingClassifier

    # Run h2o4gpu version of RandomForest Regression
    gbm = Solver(backend=backend, random_state=1234)
    print("h2o4gpu fit()")
    gbm.fit(X, y)

    # Run Sklearn version of RandomForest Regression
    from sklearn.ensemble import GradientBoostingClassifier
    gbm_sk = GradientBoostingClassifier(random_state=1234, max_depth=3)
    print("Scikit fit()")
    gbm_sk.fit(X, y)

    if backend == "sklearn":
        assert (gbm.predict(X) == gbm_sk.predict(X)).all() == True
        assert (gbm.predict_log_proba(X) == gbm_sk.predict_log_proba(X)).all() == True
        assert (gbm.predict_proba(X) == gbm_sk.predict_proba(X)).all() == True
        assert (gbm.score(X, y) == gbm_sk.score(X, y)).all() == True
        assert (gbm.decision_function(X)[1] == gbm_sk.decision_function(X)[1]).all() == True
        assert np.allclose(list(gbm.staged_predict(X)), list(gbm_sk.staged_predict(X)))
        assert np.allclose(list(gbm.staged_predict_proba(X)), list(gbm_sk.staged_predict_proba(X)))
        assert (gbm.apply(X) == gbm_sk.apply(X)).all() == True

        print("Estimators")
        print(gbm.estimators_)
        print(gbm_sk.estimators_)

        print("loss")
        print(gbm.loss_)
        print(gbm_sk.loss_)
        assert gbm.loss_.__dict__ == gbm_sk.loss_.__dict__

        print("init_")
        print(gbm.init)
        print(gbm_sk.init)

        print("Feature importance")
        print(gbm.feature_importances_)
        print(gbm_sk.feature_importances_)
        assert (gbm.feature_importances_ == gbm_sk.feature_importances_).all() == True

        print("train_score_")
        print(gbm.train_score_)
        print(gbm_sk.train_score_)
        assert (gbm.train_score_ == gbm_sk.train_score_).all() == True
开发者ID:wamsiv,项目名称:h2o4gpu,代码行数:52,代码来源:test_xgb_sklearn_wrapper.py

示例3: __init__

# 需要导入模块: from sklearn.ensemble import GradientBoostingClassifier [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingClassifier import staged_predict_proba [as 别名]
class GBM:
    def __init__(self, n, r):
        self.n = n
        self.clf = GradientBoostingClassifier(n_estimators=n, learning_rate=r, verbose=False, random_state=241)

    def fit(self, X_train, y_train):
        self.clf.fit(X_train, y_train)

    def log_loss(self, X, y):
        loss = [0] * self.n
        for i, proba in zip(
                range(0, self.n),
                self.clf.staged_predict_proba(X)):
            loss[i] = log_loss(y, proba)
        return loss
开发者ID:zazhigin,项目名称:hse,代码行数:17,代码来源:gbm.py

示例4: enumerate

# 需要导入模块: from sklearn.ensemble import GradientBoostingClassifier [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingClassifier import staged_predict_proba [as 别名]
clf.fit(X_train, y_train)

#verify log loss


loss_on_test = []

for i, pred1 in enumerate(clf.staged_decision_function(X_test)):
##    print(i)
##    print(pred1)
##    print(y_test)
    x = log_loss(y_test, 1.0/(1.0+np.exp(-pred1)))
##    print(x)
    loss_on_test.append(x)

grd2 = clf.staged_predict_proba(X_test)

loss_on_test_proba = []

for i, pred2 in enumerate(grd2):

    loss_on_test_proba.append(log_loss(y_test, pred2))

print(min(loss_on_test))
print(min(loss_on_test_proba))
print(loss_on_test_proba.index(min(loss_on_test_proba)))


loss_on_train = []

for i, pred3 in enumerate(clf.staged_decision_function(X_train)):
开发者ID:samoubiza,项目名称:ML,代码行数:33,代码来源:gbm.py

示例5: plot

# 需要导入模块: from sklearn.ensemble import GradientBoostingClassifier [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingClassifier import staged_predict_proba [as 别名]
def plot(train_loss, test_loss, fname):
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    # %matplotlib inline
    plt.figure()
    plt.plot(test_loss, 'r', linewidth=2)
    plt.plot(train_loss, 'g', linewidth=2)
    plt.legend(['test', 'train'])
    plt.savefig(fname)

min_losses = {}
for index, learning_rate in enumerate([1, 0.5, 0.3, 0.2, 0.1], start=1):
    clf = GradientBoostingClassifier(n_estimators=250, learning_rate=learning_rate, verbose=True, random_state=241)
    clf.fit(X_train, y_train)
    train_pred_iters = clf.staged_predict_proba(X_train)
    test_pred_iters = clf.staged_predict_proba(X_test)
    train_loss = [ log_loss(y_train, pred) for pred in train_pred_iters]
    test_loss = [ log_loss(y_test, pred) for pred in test_pred_iters]
    best_iter = np.argmin(test_loss)
    min_losses[learning_rate] = (test_loss[best_iter], best_iter)
    plot(train_loss, test_loss, 'plots/%d_%.1f.png' % (index, learning_rate))

# based on plots view
with open('q1.txt', 'w') as output:
    output.write('overfitting')

with open('q2.txt', 'w') as output:
    output.write('%.2f %d' % min_losses[0.2])

from sklearn.ensemble import RandomForestClassifier
开发者ID:dstarcev,项目名称:coursera-machine-learning-yandex,代码行数:33,代码来源:main.py


注:本文中的sklearn.ensemble.GradientBoostingClassifier.staged_predict_proba方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。