当前位置: 首页>>代码示例>>Python>>正文


Python ExtraTreesClassifier.score方法代码示例

本文整理汇总了Python中sklearn.ensemble.ExtraTreesClassifier.score方法的典型用法代码示例。如果您正苦于以下问题:Python ExtraTreesClassifier.score方法的具体用法?Python ExtraTreesClassifier.score怎么用?Python ExtraTreesClassifier.score使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.ExtraTreesClassifier的用法示例。


在下文中一共展示了ExtraTreesClassifier.score方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_ERT

# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import score [as 别名]
def get_ERT(Xtrain, Xtest, Ytrain, Ytest, gtree):
    # Extremely Randomized Trees
    ert = ExtraTreesClassifier(n_estimators=1000,max_features=gtree.best_estimator_.max_features,max_depth=gtree.best_estimator_.max_depth,min_samples_split=gtree.best_estimator_.min_samples_split,n_jobs=-1)
    ert.fit(Xtrain,Ytrain)
    scores = np.empty((2))
    scores[0] = ert.score(Xtrain,Ytrain)
    scores[1] = ert.score(Xtest,Ytest)
    print('Extremely Randomized Trees, train: {0:.02f}% '.format(scores[0]*100))
    print('Extremely Randomized Trees, test: {0:.02f}% '.format(scores[1]*100))

    return ert
开发者ID:manuwhs,项目名称:Trapyng,代码行数:13,代码来源:system_modules.py

示例2: test3

# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import score [as 别名]
def test3():
	print("3. Testing softmax for full harmonization...")
	trainXc, trainyc = load_dataset("train", "data/chorales_rnn.hdf5")
	devXc, devyc = load_dataset("dev", "data/chorales_rnn.hdf5")
	testXc, testyc = load_dataset("test", "data/chorales_rnn.hdf5")
	stack = lambda x1, x2: numpy.vstack((x1, x2))
	hstack = lambda x1, x2: numpy.hstack((x1, x2))
	# Remove Oracle features
	trainXc = [X[:, range(0,10)] for X in trainXc]
	devXc = [X[:, range(0,10)] for X in devXc]
	testXc = [X[:, range(0,10)] for X in testXc]
	# Aggregate data
	Xtrain = stack(reduce(stack, trainXc), reduce(stack, devXc))
	ytrain = hstack(reduce(hstack, trainyc), reduce(hstack, devyc))
	Xtest, ytest = reduce(stack, testXc), reduce(hstack, testyc)

	# Remove padding
	ypadding = ytest.max()
	Xtrain_up, ytrain_up, Xtest_up, ytest_up = [], [], [], []
	for idx, p in enumerate(ytrain):
		if p != ypadding:
			Xtrain_up.append(Xtrain[idx])
			ytrain_up.append(ytrain[idx])
	for idx, p in enumerate(ytest):
		if p != ypadding:
			Xtest_up.append(Xtest[idx])
			ytest_up.append(ytest[idx])
	Xtrain, ytrain, Xtest, ytest = numpy.array(Xtrain_up), numpy.array(ytrain_up), \
								   numpy.array(Xtest_up), numpy.array(ytest_up)

	encoder, Xtrainsparse, Xtestsparse = encode(Xtrain, Xtest)
	RF = RandomForestClassifier(10, "entropy", None)
	RF.fit(Xtrain, ytrain)
	# Write full harmonization data
	with h5py.File('data/chorales_sm.hdf5', "w", libver="latest") as f:
		f.create_dataset("Xtrain", Xtrain.shape, dtype="i", data=Xtrain)
		f.create_dataset("ytrain", ytrain.shape, dtype="i", data=ytrain)
		f.create_dataset("Xtest", Xtest.shape, dtype="i", data=Xtest)
		f.create_dataset("ytest", ytest.shape, dtype="i", data=ytest)
	print "Full harmonization data written"
	score_RF_train = RF.score(Xtrain, ytrain)
	score_RF_test = RF.score(Xtest, ytest)
	print "R-FOREST: %.2f%% training, %.2f%% test" % (score_RF_train * 100, score_RF_test * 100)
	ERF = ExtraTreesClassifier(n_estimators=40, max_depth=None, min_samples_split=1, random_state=0)
	ERF.fit(Xtrainsparse, ytrain)
	score_ERF_train = ERF.score(Xtrainsparse, ytrain)
	score_ERF_test = ERF.score(Xtestsparse, ytest)
	print "EXTRA TREES: %.2f%% training, %.2f%% test" % (score_ERF_train * 100, score_ERF_test * 100)
	logit = linear_model.LogisticRegression(multi_class='multinomial', solver='lbfgs', C=1)
	logit.fit(Xtrainsparse, ytrain)
	score_logit_train = logit.score(Xtrainsparse, ytrain)
	score_logit_test = logit.score(Xtestsparse, ytest)
	print "LOGIT: %.2f%% training, %.2f%% test" % (score_logit_train * 100, score_logit_test * 100)
开发者ID:glasperfan,项目名称:thesis,代码行数:55,代码来源:logit.py

示例3: get_ERT

# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import score [as 别名]
def get_ERT(Xtrain, Ytrain, baseTree, Xtest = None , Ytest = None, verbose = 0):
    # Extremely Randomized Trees
    ert = ExtraTreesClassifier(n_estimators=1000,max_features=baseTree.best_estimator_.max_features,
                               max_depth=baseTree.best_estimator_.max_depth,
                               min_samples_split=baseTree.best_estimator_.min_samples_split,n_jobs=-1)
    ert.fit(Xtrain,Ytrain)
    
    if (verbose == 1):
        scores = np.empty((2))
        scores[0] = ert.score(Xtrain,Ytrain)
        print('Extremely Randomized Trees, train: {0:.02f}% '.format(scores[0]*100))
        if (type(Xtest) != type(None)):
            scores[1] = ert.score(Xtest,Ytest)
            print('Extremely Randomized Trees, test: {0:.02f}% '.format(scores[1]*100))

    return ert
开发者ID:manuwhs,项目名称:Trapyng,代码行数:18,代码来源:baseClassifiersLib.py

示例4: many_classify_dtree

# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import score [as 别名]
def many_classify_dtree(X,Y):
    print("Building the model for decision trees...")
    x = []
    x.append(X.loc[0:15000])
    x.append(X.loc[15000:30000])
    x.append(X.loc[30000:45000])
    x.append(X.loc[45000:59999])
    y = []
    y.append(Y.loc[0:15000])
    y.append(Y.loc[15000:30000])
    y.append(Y.loc[30000:45000])
    y.append(Y.loc[45000:60000])
    scores = []
    for i in range(0,4):
        X_train, X_test, y_train, y_test = cross_validation.train_test_split(x[i], y[i], test_size=0.1)
        start_time = datetime.now()
        #print(start_time)
        clf = ExtraTreesClassifier(n_estimators=10)
        y_train = np.ravel(y_train)
        y_test = np.ravel(y_test)
        clf = clf.fit(X_train,y_train)
        end_time = datetime.now()
        #print(end_time)
        scores.append(clf.score(X_test,y_test))
    s = 0
    for i in range(0,4):
        s= s +scores[i]
        #print(scores[i])

    print("Classification Score using Decision Tree with Drift Detection:" + str(s/4))
开发者ID:varunbezzam,项目名称:final-year-project,代码行数:32,代码来源:drift_detection.py

示例5: do_extra_trees

# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import score [as 别名]
def do_extra_trees(md = None):
    from sklearn.ensemble import ExtraTreesClassifier
    train_X, train_Y, test_X, test_Y = analysis_glass()
    ETC = ExtraTreesClassifier(n_estimators=100, max_depth = md)
    ETC.fit(train_X, train_Y)

    return ETC.score(test_X, test_Y)
开发者ID:peipei1109,项目名称:DecisionTrees,代码行数:9,代码来源:DT.py

示例6: learn

# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import score [as 别名]
def learn(f):
    global raw_data
    print 'testing classifier'
    data = raw_data[raw_data['label'] != 'unknown']
    data = data[data['file type'] == 'EXECUTE']
    X = data.as_matrix(f)
    y = np.array(data['label'].tolist())
    #clf = RandomForestClassifier(n_estimators=100)
    clf = ExtraTreesClassifier(n_estimators=100)
    #clf = AdaBoostClassifier()
    scores = sklearn.cross_validation.cross_val_score(clf, X, y, cv=10)
    print("predicted accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
    seed = 3301
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=seed)
    clf.fit(X_train, y_train)
    scores = clf.score(X_test, y_test)
    print("actual accuracy: %0.2f" % scores)
    importances = zip(f, clf.feature_importances_)
    importances.sort(key=lambda k:k[1], reverse=True)
    for im in importances[0:20]:
        print im[0].ljust(30), im[1]
    #y_pred = clf.predict(X_test)
    #labels = ['good', 'bad']
    #cm = confusion_matrix(y_test, y_pred, labels)
    #plot_cm(cm, labels)
    #joblib.dump(clf, 'model.pkl')
    return clf
开发者ID:fxfactorial,项目名称:macholibre,代码行数:29,代码来源:create_model.py

示例7: random_forest_cross_validate

# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import score [as 别名]
def random_forest_cross_validate(targets, features, nprocesses=-1):
    cv = cross_validation.KFold(len(features), k=5, indices=False)
    #iterate through the training and test cross validation segments and
    #run the classifier on each one, aggregating the results into a list
    results = []
    for i, (traincv, testcv) in enumerate(cv):
        cfr = ExtraTreesClassifier(
            n_estimators=100,
            max_features=None,
            verbose=2,
            compute_importances=True,
            n_jobs=nprocesses,
            random_state=0,
        )
        print "Fitting cross validation #{0}".format(i)
        cfr.fit(features[traincv], targets[traincv])
        print "Scoring cross validation #{0}".format(i)
        cfr.set_params(n_jobs=1) # read in the features to predict, remove bad columns
        score = cfr.score(features[testcv], targets[testcv])
        print "Score for cross validation #{0}, score: {1}".format(i, score)
        mean_diff = get_metric(cfr, features[testcv], targets[testcv])
        print "Mean difference: {0}".format(mean_diff)
        results.append(mean_diff)
        print "Features importance"
        features_list = []
        for j, importance in enumerate(cfr.feature_importances_):
            if importance > 0.0:
                column = features.columns[j]
                features_list.append((column, importance))
        features_list = sorted(features_list, key=lambda x: x[1], reverse=True)
        for j, tup in enumerate(features_list):
            print j, tup
        pickle.dump(features_list, open("important_features.p", 'wb'))
        print "Mean difference: {0}".format(mean_diff)
        results.append(mean_diff)
开发者ID:iwonasado,项目名称:kaggle,代码行数:37,代码来源:bulldozers.py

示例8: ERFC_Classifier

# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import score [as 别名]
def ERFC_Classifier(X_train, X_cv, X_test, Y_train,Y_cv,Y_test, Actual_DS):
    print("***************Starting Extreme Random Forest Classifier***************")
    t0 = time()
    clf = ExtraTreesClassifier(n_estimators=100,n_jobs=-1)
    clf.fit(X_train, Y_train)
    preds = clf.predict(X_cv)
    score = clf.score(X_cv,Y_cv)

    print("Extreme Random Forest Classifier - {0:.2f}%".format(100 * score))
    Summary = pd.crosstab(label_enc.inverse_transform(Y_cv), label_enc.inverse_transform(preds),
                      rownames=['actual'], colnames=['preds'])
    Summary['pct'] = (Summary.divide(Summary.sum(axis=1), axis=1)).max(axis=1)*100
    print(Summary)

    #Check with log loss function
    epsilon = 1e-15
    #ll_output = log_loss_func(Y_cv, preds, epsilon)
    preds2 = clf.predict_proba(X_cv)
    ll_output2= log_loss(Y_cv, preds2, eps=1e-15, normalize=True)
    print(ll_output2)
    print("done in %0.3fs" % (time() - t0))

    preds3 = clf.predict_proba(X_test)
    #preds4 = clf.predict_proba((Actual_DS.ix[:,'feat_1':]))
    preds4 = clf.predict_proba(Actual_DS)

    print("***************Ending Extreme Random Forest Classifier***************")
    return pd.DataFrame(preds2) , pd.DataFrame(preds3),pd.DataFrame(preds4)
开发者ID:roshankr,项目名称:DS_Competition,代码行数:30,代码来源:Otto_Classification.py

示例9: classify

# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import score [as 别名]
def classify(X,Y):
    print("Building the model for random forests...")
    X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, Y, test_size=0.1)
    clf = ExtraTreesClassifier(n_estimators=10)
    y_train = np.ravel(y_train)
    y_test = np.ravel(y_test)
    clf = clf.fit(X_train,y_train)
    print("Classification Score using Random Forests:" + str(clf.score(X_test,y_test)))
开发者ID:kiransudhir95,项目名称:final-year-project,代码行数:10,代码来源:drift_detection.py

示例10: classify

# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import score [as 别名]
def classify(X,Y,test_data,test_labels):
	print("Building the model for random forests...")
	Y = np.ravel(Y)
	test_labels = np.ravel(test_labels)
	clf = ExtraTreesClassifier(n_estimators=10)
	clf = clf.fit(X,Y)
	print("Classification Score using Random Forests:" + str(clf.score(test_data,test_labels)))
	output = clf.predict(test_data)
	return output
开发者ID:kiransudhir95,项目名称:final-year-project,代码行数:11,代码来源:final_project.py

示例11: et_classify

# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import score [as 别名]
def et_classify(self):
	print "Extra Trees"
	clf = ExtraTreesClassifier()
	clf.fit(self.descr, self.target)
	mean = clf.score(self.test_descr, self.test_target)
	pred = clf.predict(self.test_descr)

	print "Pred ", pred
	print "Mean : %3f" % mean
	print "Feature Importances ", clf.feature_importances_
开发者ID:raghav297,项目名称:crunchbase,代码行数:12,代码来源:classify.py

示例12: train_model

# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import score [as 别名]
def train_model(stats, X_train, Y_train, X_test=None, Y_test=None):
        
    print "Training ExtraTrees classifier"
    clf = Classifier(n_estimators=n_estimators,n_jobs=30,
                     min_samples_leaf=nodesize,
                     #class_weight='balanced_subsample',
                     )
    clf.fit(X_train,Y_train)
    stats["train_acc"] = clf.score(X_train, Y_train)

    print "Training complete"
    print 'Training Accuracy: %.3f'%stats["train_acc"]
    
    # Breakout early if no test set is given
    if X_test is None:
        return clf, stats

    stats["test_acc"] = clf.score(X_test, Y_test)
    print 'Testing Accuracy: %.3f'%stats["test_acc"]

    X_test_TP = X_test[Y_test==1]
    Y_test_TP = Y_test[Y_test==1]
    stats["test_acc_TP"] = clf.score(X_test_TP, Y_test_TP)
    print 'Testing Accuracy TP: %.3f'%stats["test_acc_TP"]

    X_test_FP = X_test[Y_test==0]
    Y_test_FP = Y_test[Y_test==0]
    stats["test_acc_FP"] = clf.score(X_test_FP, Y_test_FP)
    print 'Testing Accuracy FP: %.3f'%stats["test_acc_FP"]
        
    pred_probas = clf.predict_proba(X_test)[:,1]
    Y_predict = clf.predict(X_test)
    
    total_contacts = Y_test.sum()
    predicted_contacts = Y_predict[Y_test==1].sum()
    print 'Total contacts predicted %i/%i'%(predicted_contacts,total_contacts)

    fpr,tpr,_ = roc_curve(Y_test, pred_probas)
    stats["ROC_AUC"] = auc(fpr,tpr)
    print "ROC area under the curve", stats["ROC_AUC"]

    return clf, stats
开发者ID:bestlab,项目名称:GREMLIN_RF,代码行数:44,代码来源:RF.py

示例13: train_data_and_score_tree

# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import score [as 别名]
def train_data_and_score_tree(features,labels, cv, depth):
    f_train, f_test, l_train, l_test = cross_validation.train_test_split(
        features, labels, test_size=cv,random_state=0
    ) 

    clf = ExtraTreesClassifier(max_depth=depth)
    # clf = DecisionTreeClassifier(max_depth=depth)
    clf = clf.fit(f_train,l_train)
    score = clf.score(f_test,l_test)
    
    return score,clf
开发者ID:leclair-7,项目名称:Machine-Learning-Project-Classifier,代码行数:13,代码来源:main.py

示例14: EnsembleMethod

# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import score [as 别名]
def EnsembleMethod(X, y):

	# divide our data set into a training set and a test set
	X_train, X_test, y_train, y_test = cross_validation.train_test_split(
    								X, y, test_size=TRAIN_TEST_SPLIT_RATIO)

	# train with decision tree classifier
	decisionTreeClassifier = DecisionTreeClassifier(max_depth=None, 
							   min_samples_split=1, random_state=0)

	# use the classifier to fit the data.
	decisionTreeClassifier.fit(X_train, y_train)

	# print the performance of the classifier
	print("====== Decision Tree Classifier ========")
	print('TRAIN SCORE', decisionTreeClassifier.score(X_train, y_train))
	print('TEST SCORE', decisionTreeClassifier.score(X_test, y_test)) 

	# train with random forest classifier
	randomForestClassifier = RandomForestClassifier(n_estimators=10,
					max_depth=None, min_samples_split=1, random_state=0)   

	# use the classifier to fit the data.
	randomForestClassifier.fit(X_train, y_train)

	# print the performance of the classifier
	print("====== Random Forest Classifier ========")
	print('TRAIN SCORE', randomForestClassifier.score(X_train, y_train))
	print('TEST SCORE', randomForestClassifier.score(X_test, y_test)) 

	# train with  extra trees classifier
	extraTreesClassifier = ExtraTreesClassifier(n_estimators=10,
				max_depth=None, min_samples_split=1, random_state=0)

	# use the classifier to fit the data.
	extraTreesClassifier.fit(X_train, y_train)

	# print the performance of the classifier
	print("======= Extra Trees Classifier ========")
	print('TRAIN SCORE', extraTreesClassifier.score(X_train, y_train))
	print('TEST SCORE', extraTreesClassifier.score(X_test, y_test)) 
开发者ID:lionheartX,项目名称:Kaggle_uoft,代码行数:43,代码来源:ensemble_methods.py

示例15: main

# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import score [as 别名]
def main():
    results = {}
    for currency in currencies:
        logging.info('Currency: {0}'.format(currency))

        # get data
        data = pd.read_csv(
            r'../../data/' + currency + '1440.csv',
            names=['date', 'time', 'open', 'high', 'low', 'close', 'volume'],
            parse_dates=[[0, 1]],
            index_col=0,
        ).astype(float)
        logging.info('Loaded {0} rows'.format(len(data)))
        # print data.tail()

        # extract features
        features = extractFeatures(data)
        # print features.tail()

        # set rewards
        rewards = calculateRewards(data)
        rewards = rewards[-len(features):]
        # print rewards.tail()

        # train split
        X_train, X_test, y_train, y_test = cross_validation.train_test_split(
            features,
            rewards,
            test_size=0.40,
            # random_state=shuffle,
        )
        logging.info('Data splitted')

        # create classifier
        logging.info('Classifier: training...')
        # rfc = RandomForestClassifier(n_estimators=30)
        rfc = ExtraTreesClassifier(n_estimators=20, oob_score=True, bootstrap=True)
        rfc.fit(X_train, y_train)

        # saving
        logging.info('Classifier: saving...')
        externals.joblib.dump(rfc, 'models/' + currency + '.pkl', compress=9)

        # score
        logging.info('Classifier: scoring...')
        results[currency] = {
            'score': rfc.score(X=X_test, y=y_test),
            'oob': rfc.oob_score_,
        }
        # break

    for currency, scores in results.iteritems():
        logging.info('{0} score:{1:.2f} oob:{2:.2f}'.format(currency, scores['score'], scores['oob']))
开发者ID:vishnuvr,项目名称:trading,代码行数:55,代码来源:classifier.py


注:本文中的sklearn.ensemble.ExtraTreesClassifier.score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。