本文整理汇总了Python中sklearn.ensemble.ExtraTreesClassifier.predict方法的典型用法代码示例。如果您正苦于以下问题:Python ExtraTreesClassifier.predict方法的具体用法?Python ExtraTreesClassifier.predict怎么用?Python ExtraTreesClassifier.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.ensemble.ExtraTreesClassifier
的用法示例。
在下文中一共展示了ExtraTreesClassifier.predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: crossVal
# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import predict [as 别名]
def crossVal(positions, X, y, missedYFile):
outF = open(missedYFile, 'w')
posArray = np.array(positions)
# Split into training and test
sss = StratifiedShuffleSplit(y, 4, test_size=0.1, random_state=442)
cvRound = 0
for train_index, test_index in sss:
clf = ExtraTreesClassifier(n_estimators=300,
random_state=13,
bootstrap=True,
max_features=20,
min_samples_split=1,
max_depth=8,
min_samples_leaf=13,
n_jobs=4
)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
pos_test = posArray[test_index]
clf = clf.fit(X_train, y_train)
preds = clf.predict(X_test)
metrics.confusion_matrix( y_test, preds )
print( metrics.classification_report(y_test, clf.predict(X_test)) )
for loc,t,p in zip(pos_test, y_test, preds):
if t=='0' and p=='1':
print >> outF, loc + '\t' + str(cvRound)
cvRound += 1
outF.close()
示例2: __init__
# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import predict [as 别名]
class Identifier:
def __init__(self,grabable = set([]),clf = None):
self.grabable = grabable #TODO if we care to, not used at the mo
self.orb = orb = cv2.ORB(nfeatures = 1000)#,nlevels = 20, scaleFactor = 1.05)
self.items = [ "champion_copper_plus_spark_plug", "cheezit_big_original","crayola_64_ct", "dove_beauty_bar", "elmers_washable_no_run_school_glue","expo_dry_erase_board_eraser", "feline_greenies_dental_treats","first_years_take_and_toss_straw_cups", "genuine_joe_plastic_stir_sticks","highland_6539_self_stick_notes", "kong_air_dog_squeakair_tennis_ball","kong_duck_dog_toy", "kong_sitting_frog_dog_toy", "kygen_squeakin_eggs_plush_puppies","mark_twain_huckleberry_finn", "mead_index_cards","mommys_helper_outlet_plugs","munchkin_white_hot_duck_bath_toy", "one_with_nature_soap_dead_sea_mud","oreo_mega_stuf", "paper_mate_12_count_mirado_black_warrior","rollodex_mesh_collection_jumbo_pencil_cup", "safety_works_safety_glasses", "sharpie_accent_tank_style_highlighters", "stanley_66_052" ]
if not clf:
print "Training new classifier"
self.clf =ExtraTreesClassifier(min_samples_split = 1,n_jobs = -1,n_estimators = 150, class_weight = 'subsample')
X = np.ascontiguousarray(joblib.load('labels.pkl'))
Y = np.ascontiguousarray(joblib.load('features.pkl'), dtype = np.float64)
Y = preprocessing.scale(Y)
self.clf.fit(Y,X)
else:
self.clf = clf
def identify(self,im,possibilites):
if im is not None:
kpTest, desTest = self.orb.detectAndCompute(im,None)
pred = self.clf.predict(preprocessing.scale(np.array(desTest,dtype = np.float64)))
c = Counter(pred)
r = [(k,c[k]) for k in sorted(set(c.keys())&possibilites, key = lambda k: c[k],reverse = True)]
if r:
item = r[0][0]
print self.items[item],
return item
else:
return -1
else:
print "Image to recognize is None"
示例3: train_UsingExtraTreesClassifier
# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import predict [as 别名]
def train_UsingExtraTreesClassifier(df,header,x_train, y_train,x_test,y_test) :
# training
clf = ExtraTreesClassifier(n_estimators=200,random_state=0,criterion='gini',bootstrap=True,oob_score=1,compute_importances=True)
# Also tried entropy for the information gain but 'gini' seemed to give marginally better fit, bith in sample & out of sample
clf.fit(x_train, y_train)
#estimation of goodness of fit
print "Estimation of goodness of fit using the ExtraTreesClassifier is : %f \n" % clf.score(x_test,y_test)
print "Estimation of out of bag score using the ExtraTreesClassifier is : %f \n \n " % clf.oob_score_
# getting paramters back, if needed
clf.get_params()
# get the vector of predicted prob back
y_test_predicted= clf.predict(x_test)
X = df[df.columns - [header[-1]]]
feature_importance = clf.feature_importances_
# On a scale of 10 - make importances relative to max importance and plot them
feature_importance = 10.0 * (feature_importance / feature_importance.max())
sorted_idx = np.argsort(feature_importance) #Returns the indices that would sort an array.
pos = np.arange(sorted_idx.shape[0]) + .5
plt.figure(figsize=(12, 6))
plt.subplot(1, 1, 1)
plt.barh(pos, feature_importance[sorted_idx], align='center')
plt.yticks(pos, X.columns[sorted_idx])
plt.xlabel('Relative Importance')
plt.title('Variable Importance')
plt.show()
return y_test_predicted
示例4: predict_TestData
# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import predict [as 别名]
def predict_TestData(Food_df,People_df):
cTrainF = rand(len(Food_df)) > .5
cTestF = ~cTrainF
cTrainP = rand(len(People_df)) > .5
cTestP = ~cTrainP
TrainX_df = pd_concat([People_df[cTrainP], Food_df[cTrainF]],axis=0)
TestX_df = pd_concat([People_df[cTestP], Food_df[cTestF]],axis=0)
TrainX= TrainX_df.ix[:,2:].values
TestX= TestX_df.ix[:,2:].values
TrainY = concatenate([ones(len(People_df[cTrainP])), zeros(len(Food_df[cTrainF]))])
TestY = concatenate([ones(len(People_df[cTestP])), zeros(len(Food_df[cTestF]))])
ET_classifier = ExtraTreesClassifier(n_estimators=50, max_depth=None, min_samples_split=1, random_state=0)
ET_classifier.fit(TrainX,TrainY)
ET_prediction = ET_classifier.predict(TestX)
LinSVC_classifier = svm.LinearSVC()
LinSVC_classifier.fit(TrainX,TrainY)
LinSVC_predict = LinSVC_classifier.predict(TestX)
a=DataFrame()
a["url"]=TestX_df.urls.values
a["answer"]=TestY
a["ET_predict"]=ET_prediction
a["LinSVC_predict"]=LinSVC_predict
a.to_csv("prediction_for_TestData.csv")
示例5: ERFC_Classifier
# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import predict [as 别名]
def ERFC_Classifier(X_train, X_cv, X_test, Y_train,Y_cv,Y_test, Actual_DS):
print("***************Starting Extreme Random Forest Classifier***************")
t0 = time()
clf = ExtraTreesClassifier(n_estimators=100,n_jobs=-1)
clf.fit(X_train, Y_train)
preds = clf.predict(X_cv)
score = clf.score(X_cv,Y_cv)
print("Extreme Random Forest Classifier - {0:.2f}%".format(100 * score))
Summary = pd.crosstab(label_enc.inverse_transform(Y_cv), label_enc.inverse_transform(preds),
rownames=['actual'], colnames=['preds'])
Summary['pct'] = (Summary.divide(Summary.sum(axis=1), axis=1)).max(axis=1)*100
print(Summary)
#Check with log loss function
epsilon = 1e-15
#ll_output = log_loss_func(Y_cv, preds, epsilon)
preds2 = clf.predict_proba(X_cv)
ll_output2= log_loss(Y_cv, preds2, eps=1e-15, normalize=True)
print(ll_output2)
print("done in %0.3fs" % (time() - t0))
preds3 = clf.predict_proba(X_test)
#preds4 = clf.predict_proba((Actual_DS.ix[:,'feat_1':]))
preds4 = clf.predict_proba(Actual_DS)
print("***************Ending Extreme Random Forest Classifier***************")
return pd.DataFrame(preds2) , pd.DataFrame(preds3),pd.DataFrame(preds4)
示例6: automatic_bernulli
# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import predict [as 别名]
def automatic_bernulli():
data = pd.read_csv('/home/vasiliy/Study/StadiumProject/Classifier/signs.csv', sep=';')
Y = np.array(data['fight'].get_values())
np.random.shuffle(Y)
data.drop(['match', 'city', 'date', 'fight'], 1, inplace=True)
# data = data[['anger_over_value_relation', 'avg_likes', 'sc_max_surprise', 'sc_median_fear',
# 'fear_over_value_relation']]
X = data.as_matrix()
features_number = 0
result = {}
for features_number in range(3, 16):
X_new = SelectKBest(f_classif, k=features_number).fit_transform(X, Y)
# X_new = X
classifier = ExtraTreesClassifier()
super_means = []
for i in range(1000):
kf = KFold(len(X_new), n_folds=6, shuffle=True)
means = []
for training, testing in kf:
classifier.fit(X_new[training], Y[training])
prediction = classifier.predict(X_new[testing])
curmean = np.mean(prediction == Y[testing])
means.append(curmean)
super_means.append(np.mean(means))
print 'features_number=', features_number, 'Mean accuracy: {:.1%} '.format(
np.mean(super_means))
# result['fn'+str(features_number)+'n_n'+str(n_neib)] = np.mean(super_means)
score, permutation_scores, pvalue = permutation_test_score(classifier, X_new, Y, scoring="accuracy", cv=kf,
n_permutations=len(Y), n_jobs=1)
print ("Classification score %s (pvalue : %s)" % (score, pvalue))
示例7: extratreeclassifier
# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import predict [as 别名]
def extratreeclassifier(input_file,Output,test_size):
lvltrace.lvltrace("LVLEntree dans extratreeclassifier split_test")
ncol=tools.file_col_coma(input_file)
data = np.loadtxt(input_file, delimiter=',', usecols=range(ncol-1))
X = data[:,1:]
y = data[:,0]
n_samples, n_features = X.shape
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
print X_train.shape, X_test.shape
clf = ExtraTreesClassifier(n_estimators=10)
clf.fit(X_train,y_train)
y_pred = clf.predict(X_test)
print "Extremely Randomized Trees"
print "classification accuracy:", metrics.accuracy_score(y_test, y_pred)
print "precision:", metrics.precision_score(y_test, y_pred)
print "recall:", metrics.recall_score(y_test, y_pred)
print "f1 score:", metrics.f1_score(y_test, y_pred)
print "\n"
results = Output+"_Extremely_Random_Forest_metrics_test.txt"
file = open(results, "w")
file.write("Extremely Random Forest Classifier estimator accuracy\n")
file.write("Classification Accuracy Score: %f\n"%metrics.accuracy_score(y_test, y_pred))
file.write("Precision Score: %f\n"%metrics.precision_score(y_test, y_pred))
file.write("Recall Score: %f\n"%metrics.recall_score(y_test, y_pred))
file.write("F1 Score: %f\n"%metrics.f1_score(y_test, y_pred))
file.write("\n")
file.write("True Value, Predicted Value, Iteration\n")
for n in xrange(len(y_test)):
file.write("%f,%f,%i\n"%(y_test[n],y_pred[n],(n+1)))
file.close()
title = "Extremely Randomized Trees %f"%test_size
save = Output + "Extremely_Randomized_Trees_confusion_matrix"+"_%s.png"%test_size
plot_confusion_matrix(y_test, y_pred,title,save)
lvltrace.lvltrace("LVLSortie dans extratreeclassifier split_test")
示例8: extremeRand
# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import predict [as 别名]
def extremeRand(trainData,testData,trainOuts,testOuts):
clf = ExtraTreesClassifier(n_estimators=5, max_depth=10,
min_samples_split=1, random_state=2)
print(clf.fit(trainData,trainOuts))
predictions = clf.predict(testData)
print(predictions)
misses,error = sup.crunchTestResults(predictions,testOuts,.5)
print(1-error)
示例9: classify
# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import predict [as 别名]
def classify(X,Y,test_data,test_labels):
print("Building the model for random forests...")
Y = np.ravel(Y)
test_labels = np.ravel(test_labels)
clf = ExtraTreesClassifier(n_estimators=10)
clf = clf.fit(X,Y)
print("Classification Score using Random Forests:" + str(clf.score(test_data,test_labels)))
output = clf.predict(test_data)
return output
示例10: EXRT
# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import predict [as 别名]
def EXRT(X_train,t_train,x,t,predict):
for i in [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]:
clf = ExtraTreesClassifier(n_estimators=500, max_depth=None, max_features=i)
clf.fit(X_train, t_train)
prediction = clf.predict(x)
if predict:
write_predictions(t,prediction)
else:
get_accuracy(prediction,t)
示例11: extratree_cla
# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import predict [as 别名]
def extratree_cla(train_data, train_id, test_data, seed = None):
clf = ExtraTreesClassifier(n_estimators=1000, n_jobs=4, random_state= seed)#, max_features="log2")
param_grid = {
'n_estimators': [200, 700],
'max_features': ['auto', 'sqrt', 'log2']
}
clf.fit(train_data, train_id)
pred_class = clf.predict(test_data)
pred_prob = clf.predict_proba(test_data)
return pred_class, pred_prob
示例12: et_classify
# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import predict [as 别名]
def et_classify(self):
print "Extra Trees"
clf = ExtraTreesClassifier()
clf.fit(self.descr, self.target)
mean = clf.score(self.test_descr, self.test_target)
pred = clf.predict(self.test_descr)
print "Pred ", pred
print "Mean : %3f" % mean
print "Feature Importances ", clf.feature_importances_
示例13: test_extra_trees_3
# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import predict [as 别名]
def test_extra_trees_3():
"""Ensure that the TPOT ExtraTreesClassifier outputs the same as the sklearn version when min_weight > 0.5"""
tpot_obj = TPOT()
result = tpot_obj._extra_trees(training_testing_data, 0, 1., 0.6)
result = result[result['group'] == 'testing']
etc = ExtraTreesClassifier(n_estimators=500, random_state=42, max_features=1., min_weight_fraction_leaf=0.5, criterion='gini')
etc.fit(training_features, training_classes)
assert np.array_equal(result['guess'].values, etc.predict(testing_features))
示例14: PCA_reduction
# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import predict [as 别名]
def PCA_reduction(posture, trainblock, componenet):
currentdirectory = os.getcwd() # get the directory.
parentdirectory = os.path.abspath(currentdirectory + "/../..") # Get the parent directory(2 levels up)
path = parentdirectory + '\Output Files\E5-Dimensionality Reduction/posture-'+str(posture)+'/TrainBlock-'+str(trainblock)+''
if not os.path.exists(path):
os.makedirs(path)
i_user = 1
block = 1
AUC = []
while i_user <= 31:
while block <= 6:
train_data = np.genfromtxt("../../Output Files/E3-Genuine Impostor data per user per posture/posture-"+str(posture)+"/User-"+str(i_user)+"/1-"+str(i_user)+"-"+str(posture)+"-"+str(trainblock)+"-GI.csv", dtype=float, delimiter=",")
test_data = np.genfromtxt("../../Output Files/E3-Genuine Impostor data per user per posture/posture-"+str(posture)+"/User-"+str(i_user)+"/1-"+str(i_user)+"-"+str(posture)+"-"+str(block)+"-GI.csv", dtype=float, delimiter=",")
target_train = np.ones(len(train_data))
row = 0
while row < len(train_data):
if np.any(train_data[row, 0:3] != [1, i_user, posture]):
target_train[row] = 0
row += 1
row = 0
target_test = np.ones(len(test_data))
while row < len(test_data):
if np.any(test_data[row, 0:3] != [1, i_user, posture]):
target_test[row] = 0
row += 1
sample_train = train_data[:, [3,4,5,6,7,9,11,12,13,14,15,16,17]]
sample_test = test_data[:, [3,4,5,6,7,9,11,12,13,14,15,16,17]]
scaler = preprocessing.MinMaxScaler().fit(sample_train)
sample_train_scaled = scaler.transform(sample_train)
sample_test_scaled = scaler.transform(sample_test)
pca = PCA(n_components=componenet)
sample_train_pca = pca.fit(sample_train_scaled).transform(sample_train_scaled)
sample_test_pca = pca.transform(sample_test_scaled)
clf = ExtraTreesClassifier(n_estimators=100)
clf.fit(sample_train_pca, target_train)
prediction = clf.predict(sample_test_pca)
auc = metrics.roc_auc_score(target_test, prediction)
AUC.append(auc)
block += 1
block = 1
i_user += 1
print(AUC)
AUC = np.array(AUC)
AUC = AUC.reshape(31, 6)
np.savetxt("../../Output Files/E5-Dimensionality Reduction/posture-"+str(posture)+"/TrainBlock-"+str(trainblock)+"/PCA-"+str(componenet)+"-Component.csv", AUC, delimiter=",")
开发者ID:npalaska,项目名称:Leveraging_the_effect_of_posture_orientation_of_mobile_device_in_Touch-Dynamics,代码行数:55,代码来源:dimensionality+reduction+2.py
示例15: extraTree
# 需要导入模块: from sklearn.ensemble import ExtraTreesClassifier [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesClassifier import predict [as 别名]
def extraTree(X, y, train, valid):
clf = ExtraTreesClassifier(n_jobs = -1, n_estimators = 300, verbose = 2,
random_state = 1, max_depth = 10, bootstrap = True)
clf.fit(X[train], y[train])
yhat = clf.predict(X[valid])
yhat_prob = clf.predict_proba(X[valid])[:,1]
print("extra tree randomForest" + str(accuracy_score(y[valid], yhat)))
print(classification_report(y[valid], yhat))
print("extra tree randomForest roc_accuracy" + str(roc_auc_score(y[valid], yhat_prob)))
np.savetxt("y_extratree.csv", yhat_prob)
return yhat_prob