当前位置: 首页>>代码示例>>Python>>正文


Python AdaBoostRegressor.staged_predict方法代码示例

本文整理汇总了Python中sklearn.ensemble.AdaBoostRegressor.staged_predict方法的典型用法代码示例。如果您正苦于以下问题:Python AdaBoostRegressor.staged_predict方法的具体用法?Python AdaBoostRegressor.staged_predict怎么用?Python AdaBoostRegressor.staged_predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.AdaBoostRegressor的用法示例。


在下文中一共展示了AdaBoostRegressor.staged_predict方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: train_predict

# 需要导入模块: from sklearn.ensemble import AdaBoostRegressor [as 别名]
# 或者: from sklearn.ensemble.AdaBoostRegressor import staged_predict [as 别名]
def train_predict(train_id, test_id):
	# load libsvm files for training dataset
	Xs_train = []
	ys_train = []
	n_train = load_libsvm_files(train_id, Xs_train, ys_train)
	# load libsvm files for testing dataset
	Xs_test = []
	ys_test = []
	n_test = load_libsvm_files(test_id, Xs_test, ys_test)

	# models
	model = []

	# ans
	ans_train = []
	ans_test = []

	# generate predictions for training dataset
	ps_train = []
	for i in range(0, n_train):
		ps_train.append([0.0 for j in range(10)])

	# generate predictions for testing dataset
	ps_test = []
	for i in range(0, n_test):
		ps_test.append([0.0 for j in range(10)])

	# fit models
	for i in range(10):
		l = np.array([ys_train[j][i] for j in range(n_train)])
		clf = AdaBoostRegressor(DecisionTreeRegressor(max_depth=params['max_depth']), n_estimators=params['n_estimators'], learning_rate=params['learning_rate'])
		clf.fit(Xs_train[i].toarray(), l)
		print "[%s] [INFO] %d model training done" % (t_now(), i)
		preds_train = clf.staged_predict(Xs_train[i].toarray())
		ans_train.append([item for item in preds_train])
		# print "len(ans_train[%d]) = %d" % (i, len(ans_train[i]))
		print "[%s] [INFO] %d model predict for training data set done" % (t_now(), i)
		preds_test = clf.staged_predict(Xs_test[i].toarray())
		ans_test.append([item for item in preds_test])
		print "[%s] [INFO] %d model predict for testing data set done" % (t_now(), i)

	#print "len_ans_train=%d" % len(ans_train[0])

	# predict for testing data set
	for i in range(params['n_estimators']):
		for j in range(10):
			tmp = min(i, len(ans_train[j]) - 1)
			for k in range(n_train):
				ps_train[k][j] = ans_train[j][tmp][k]
			tmp = min(i, len(ans_test[j]) - 1)
			for k in range(n_test):
				ps_test[k][j] = ans_test[j][tmp][k]
		print "%s,%d,%f,%f" % (t_now(), i + 1, mean_cos_similarity(ys_train, ps_train, n_train), mean_cos_similarity(ys_test, ps_test, n_test))

	return 0
开发者ID:HouJP,项目名称:tianyi-16,代码行数:57,代码来源:ada_reg.py

示例2: test_sparse_regression

# 需要导入模块: from sklearn.ensemble import AdaBoostRegressor [as 别名]
# 或者: from sklearn.ensemble.AdaBoostRegressor import staged_predict [as 别名]
def test_sparse_regression():
    """Check regression with sparse input."""

    class CustomSVR(SVR):
        """SVR variant that records the nature of the training set."""

        def fit(self, X, y, sample_weight=None):
            """Modification on fit caries data type for later verification."""
            super(CustomSVR, self).fit(X, y, sample_weight=sample_weight)
            self.data_type_ = type(X)
            return self

    X, y = datasets.make_regression(n_samples=100, n_features=50, n_targets=1,
                                    random_state=42)

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix,
                          dok_matrix]:
        X_train_sparse = sparse_format(X_train)
        X_test_sparse = sparse_format(X_test)

        # Trained on sparse format
        sparse_classifier = AdaBoostRegressor(
            base_estimator=CustomSVR(probability=True),
            random_state=1
        ).fit(X_train_sparse, y_train)

        # Trained on dense format
        dense_classifier = dense_results = AdaBoostRegressor(
            base_estimator=CustomSVR(probability=True),
            random_state=1
        ).fit(X_train, y_train)

        # predict
        sparse_results = sparse_classifier.predict(X_test_sparse)
        dense_results = dense_classifier.predict(X_test)
        assert_array_equal(sparse_results, dense_results)

        # staged_predict
        sparse_results = sparse_classifier.staged_predict(X_test_sparse)
        dense_results = dense_classifier.staged_predict(X_test)
        for sprase_res, dense_res in zip(sparse_results, dense_results):
            assert_array_equal(sprase_res, dense_res)

        sparse_type = type(X_train_sparse)
        types = [i.data_type_ for i in sparse_classifier.estimators_]

        assert all([(t == csc_matrix or t == csr_matrix)
                   for t in types])
开发者ID:93sam,项目名称:scikit-learn,代码行数:52,代码来源:test_weight_boosting.py


注:本文中的sklearn.ensemble.AdaBoostRegressor.staged_predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。